

ATARI®
MACRO ASSEMBLER

JI_
ATARI®

(IA Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Home Computer Division.
However, because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the
accuracy of printed material after the date of publication and cannot accept responsibility for errors .::>r omissions.

Reproduction is forbidden without the specific written permission of AT ARI, I NC., Sunnyvale, CA 94086. No right to reproduce this docu­
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

PRINTED IN U.S.A. MANUAL AND PROGRAM CONTENTS ©1981 ATARI, INC.

CONTENTS

1 INTRODUCTION 1

Features of This Package 1
Macros 1
Conditional Assembly and Code Duplication 1
Systext Files 1
Program Listing Control 1
Cross-Reference Tables 1
Standard AT ARI Computer and 6502 Mnemonics 2

Contents of This Software Package 2
Procedures 2

Program Loading Instructions 2
Creating a Source Program 2
Assembling a Source Program 3

Purpose of This Manual 3
References 3

2 ASS EM BLER EXECUTION 5

Command Line Syntax 5

Command Line Options 5
Command Line Examples 6
User Interface 7

3 FILE USAGE 9

Source Input Files 9
System Text Files 9
Object Output File 9
Listing File 9
Source Listing Format 10
Sample Listing 10
Symbol Map Format 14

4 LANGUAGE STRUCTURE 15

Statements 15

Label Field 15
Operation Field 15
Variable Field 15

Contents iii

Statement Termination 16
Comments 16
Definitions 16
Symbols and Names 16
Numbers 17
Character Strings 17
Expressions 18
Operands 18

5 MACRO FACILITY 21

Macro Definition 21
Macro Call 21
Code Duplication 22
Nesting 22

6 PS EU DO-OP ERATIONS 23

ASSERT 23
DB 24
DC 24
OS 24
ow 25
ECHO ... ENDM 25
EJECT 26
END 26
EQU or= 27
ERR 27
IF ... ENDIF, IF ... ELSE ... ENDIF 27
INCLUDE 28
LINK 29
LIST 31
LOC 32
MACRO ... ENDM 33
ORG 35
PROC ... EPROC 35
REAL6 36
SET 36
SPACE 36
SUBTTL 37
TITLE 37
USE 38
VFD 38

iv Contents

7 PS EU DO-OP QU ICK R EFERENC E 41

8 INSTRUCTION MN EMONICS 43

9 U SING THE ATARI MACRO ASS EM BLER
WITH THE ATARI ASS EM BLER EDITOR
SOURCE FILES 49

1 0 ERROR CODES 51

Contents v

FEATURES OF
THIS PACKAGE

1

INTRODUCTION

The AT ARI® Macro Assembler is a software deve lopment tool for writ ing 6502

assembly language programs for the ATARI 800™ Home Computer The featu res of
th is assem bler inc l ude macros, cond itional assembly, code du p l ication, access to
l i brary defi nit ions, program- l i st ing control , and c ross-reference tables. I t offers fast
compil ation and uses standard 6502 m nemonics.

MACROS

The macro featu re a l lows you to define code words to represent mu lt ip le instruc­
t ions . I t makes it easy for you to use a sequence of code many times i n a program.

CON DITIONAL ASSEMBLY AN D CODE DUPLICATION

Condit ional assembly a l lows the generation of source code based on certa i n condi­
tions . Combi ned with macros th is offers a powerfu l and versati le way of cod ing
assem bly language programs. An ECHO pseudo-operation enables you to repeat
sections of code (sim i la r to the macro featu re, but it does not a l l ow parameter
passing).

SYSTEXT FILES

Often you w i l l want to c reate and store sym bols and macro def in it ions on a l ibrary
f i le . O nce c reated , the sym bols can be referenced by any of you r sou rce programs.
Such a library f i l e can ease your program development effort.

PROGRAM LISTING CONTROL

The L I ST pseudo-op lets you tai lor and annotate programs to f it you r exact needs.
The pseudo-op m akes doc u mentation eas ier by a l l owing l i sting control and page
headings.

CROSS-REFERENCE TABLES

The Macro Assembler a l so i n c l udes an optional c ross-reference table so that you
can reference labels and variables in the sou rce program quickly .

Introduction 1

CONT ENTS OF
THIS SOFTWARE
PACKAGE

PROCEDURES

2 Introduction

STANDARD ATARI COMPUTER AN D 6502 MNEMONICS

A fi le conta i n i ng the AT AR I Home Computer Hardware Reg ister add resses and OS
S hadow Register add resses is i nc l uded on you r Macro Assembler d iskette . You may
reference standard AT ARI Com puter m nemon ics i n your programs u s i ng th is f i le .
See Systext reference i n "Command L ine Options" in Sect ion 2 .

Standard MOS Technology 6502 m ic roprocessor cod ing format is u sed in th is
assem b ler. The formation of expressions a l so fo l l ows the standard conventions.

The Macro Assem bler i nc ludes:

• A diskette containing both the Macro Assembler and P rogram-Text E d i tor™
software

• A reference card g iv ing pseudo-ops, error codes, and Program-Text E d i tor
commands and messages

• This reference manual for the AT AR I Macro Assem b ler

• An operators manua l for the ATA R I Program-Text E d itor

PROGRAM LOADING INSTRUCTIONS

1 . Connect the AT AR I 800 Home Computer to a te levis ion set and to a wa l l
out let as instructed i n the operators manua l .

2 . Connect the ATARI 810™ Disk Drive t o the computer console a n d t o a wal l
out let as instructed i n the AT AR I 810 Disk Drive Operators Manual. Verify
that the d isk d r ive is set to D R I V E CODE 1 as i nstru cted in the operators
manua l .

3. Open the cartridge door on the top of the computer console. Remove a l l
cartr idges from the top front cartridge s lots. C lose the cartridge door.

4 . Turn on your te levis ion set.

5. Turn the d isk d r ive POW E R (PWR) switch to O N . Two red l ights (the B U SY
l ight and the PWR ON l ight) wi l l come on .

6. When the BUSY l ight goes out, open the disk d r ive door by press ing the door
hand l e release lever.

7 . I nsert the d i skette conta i n i ng the Macro Assembler and Program-Text E d itor
programs i nto disk drive 1.

8 . Switc h the POW E R (PW R) switc h on the compute r conso le to ON.

The DOS I I Menu wi l l now appear on your screen.

CREATING A SOURCE PROGRAM

To use the ed itor, refer to the ATARI Program-Text Editor Manual.

PURPOS E OF
THIS MANUAL

REFERENCES

After you c reate your source program, ex it the Program-Text E d itor us ing the com­
mands that wi l l return you to DOS:

1. P ress lmmll
2 . Type EXIT and press (Th i s retu rns you to DOS.)

Then, to assemble you r sou rce program:

1. Type the letter L and press
2 . Type AMAC a n d press

ASSEMBLING A SOURCE PROGRAM

1. Refer to "Com mand L ine Syntax" (in Section 2) for the command l i ne syntax
and command l i ne options. Press after the command l i ne.

2. After the assem bly, press the to retu rn to DOS. Your DOS d i rec-
tory wi l l now s how that you c reated an object f i le with an extens ion,
O BJ.

Th is manua l i s i ntended to s how you how to use the Macro Assembler . I f you p lan
to use the Program-Text E d itor for c reat ing you r source program, i t i s suggested
that you read the ATARI Program-Text Editor Manual, then practice c reat ing f i les.

A k nowledge of assembly l anguage and AT ARI DOS 11 i s a l so necessary. The texts
l isted below w i l l assist in your study of assembly language. I f you wish to become
fam i l ia r with the spec ia l featu res of the AT A R I Home Computer, a copy of the
ATARI Technical Users Notes wi l l be needed.

We recom mend the fol l owing books:

MOS Programming Manual by MOS Microcomputers
SY6500/MCS6500 Microcomputer Family Programming Manual by SYN E RT E K
6502 Assembly Language Programming by Lance Leventhal
6502 Software Design by Leo Scanlon
6502 Software Gourmet Guide and Cookbook by Robert F ind ley

AT A R I pu b l i cations:

ATARI DOS II Reference Manual
AT AR I Technical Users Notes

Introduction 3

COMMAND LINE
SYNTAX

COMMAND LINE
OPTIONS

2

ASSEMBLER EXECUTION

The Macro Assembler is accessed by the AT ARI DOS 11 Menu option L. When DOS
asks for a f i l ename to load, type:

AMAC mm1a

Once AMAC is loaded into memory, it w i l l ask you to "E nter sou rce f i l ename and
options." The sou rce f i l ename must a lways be specif ied. Any options you wish to
use shou ld fol low the f i l ename, separated by e i ther a com ma or space. The com­
m and l ine is term inated by a carriage retu rn. The command l ine cannot be edited
u s ing the cu rsor control keys.

The general form of the com mand l ine is: < f i lespec > opt1 , . . optn. Where
< f i l espec > is the source f i le to be asse m b l ed and is of the form
< dev ice > : < f i lename > . < extension > . The above command l ine cou ld have
been typed with any m ixture of u pper- or lowercase characters. The assembler wi l l
convert a l l command l ine characters to uppercase before interpretation.

The 'opt1 , . . optn' are optiona l parameters (in any order) c hosen from th is l i st:

H = Dn:
(Defau l t is H = Dn:
where n is the
same disk drive as
the sou rce f i le)

H = < f i l espec >

H = O

L = P:

L = Dn:

L = S:

L = O (Defau l t'

O = n

O = O (Defa u l t)

Generate object output f i l e to the specif ied disk dr ive
where n may be 1 , 2 , 3, or 4. I f no f i l ename is spec ified, the
object f i l e wi l l be named with the input source f i l ename
and the extension, OBJ .

Write object code to < f i l espec > .

Do not generate any object code.

L i st output to pr inter.

L ist output to spec if ied disk drive (n = 1 , 2, 3, or 4). L i st
f i lename has the input sou rce f i l ename and the extens ion
PRN .

Output l isting to the screen.

Do not produce l ist ing for th is assembly.

Preset the va lue of the run address of the object program .
Spec ify ing "O = n" on the com mand l ine is exact ly l ike
the statement "E N D n" found at the end of an assem bly
program.

Set the value of the run address to zero.

Assembler Execution 5

COMMAND LINE
EXAMPLES

6 Assembler Execution

PS = n (Defau l t is
PS = 63)

PS = O

S = < f i l espec >

s

S = O (Defau l t)

R = F

R = S

R = O (Defau l t)

S L = n
(Defau l t i s
S L = 80 for P: and
S L = 38 for S :)

Set page s ize to < n > sou rce l i nes per page. Page s ize
must be less than 1 27 . When page s ize is less than 1 0, no
title or subtit le l i nes nor page ejects are pr inted i n the l ist
f i le , and a fu 11 cross-reference is d i sa l lowed.

Do not print tit le and su btit le l i nes and page ejects to l i st
f i l e for this assembly.

Spec ify systext f i le . The S option may be repeated. The
user may specify as many systexts as des i red, so long as
combined number of systexts and l i nk f i les does not ex­
ceed the f i l e l imit of 40 .

Use the defau l t systext D :SYSTEXT.AST.

Spec ify no systext for th is assembly.

G enerate fu l l reference map. L ist a l l g lobal symbols and
their references on the f i l e spec if ied by the L parameter.

Generate short reference map. L i st a l l g lobal symbols and
the i r va l u es on ly on the f i l e spec if ied by the L parameter.

Do not generate reference map.

Set the l i ne length. Maximum length of the l i ne output to
the l ist f i le w i l l be < n > characters; the rest of the l i ne is
d iscarded if < n > is greater than the device l i ne
length.

A l l numeric argument va lues (for 0 = n , PS = n, and S L = n) may be specif ied ac­
cord ing to the general syntax for n umbers. I n part icu l ar, an exp l i c it rad ix (dec ima l ,
b i nary, octa l , or hexadecimal) can b e used. Refer t o Section 4 , "N umbers," f o r rad ix
spec if icat ion.

Al l lowercase letters on the command l i ne are converted to u ppercase before i nter­
pretation.

D : T E S T I T.ASM

w i l l read input f i l e D1 : T E ST I T.ASM (D: impl ies D1 :) , no l ist ing w i l l be produ ced, and
the AT ARI b inary format object f i l e w i l l be D1 :TEST I T.O BJ .

D :T E ST I T.ASM H = O R = F L = S:

w i l l assemble D1 :TEST I T.ASM, suppress object f i le generation, and send a l ist ing
with f u l l reference map to the screen.

D2 :TEST I T.ASM H = D: L = D2: R = F 0 = $200

The assembler w i l l assemble the f i l e D2 :TEST I T .ASM generat ing the object f i l e
D1 : T E ST I T. O BJ , and w i l l produ ce a l i st ing and fu l l reference map i n
D2:T E ST I T . P RN. I n add it ion, it w i l l a l so set the run address t o $200.

02 :TEST I T.ASM S S = D2:MSYS.AST L = P: R = F H = O: 0 = $1 700

The assembler w i l l process the two systext f i les 01 :SYSTEXT.AST and
02:MSYS.AST, assemble the f i le 02:TEST I T .ASM, produce the object f i l e
01 :TESTIT .OBJ w i th a run add ress of $1 700, and pr i n t a l isting w i th fu l l reference
map on the pri nter.

USER INT ERFACE The assembler execution may be prematu rely terminated by press ing the
key . When output l ist ing is d i rected to the screen, its execut ion can be tempora ri
ha lted by simu ltaneously press ing the key and the 1 key. Press ing those two
keys aga i n w i l l restart execut ion.

I f a d isk-write error happens (usua l ly d isk or d i rectory fu l l), the offending f i le (ob­
ject or I ist f i l e) is erased, an error message is i ssued to the screen, and f u rther at­
tempts to write to the f i le are suppressed. Assembly then cont i nues normal ly.

Assembly time errors are pri nted to the screen as we l l as to the l ist f i l e.

Assembler Execution 7

SOURCE
INPUT FILES

SYSTEM
T EXT FILES

OBJECT
OUTPUT FILE

LISTING FILE

3

FILE USAGE

You can specify sou rce i nput f i les by us ing the:

• F i rst command l i ne argument

• Systext f i l e argument (S parameter)

• L I N K pseudo-i nstruction

• I NC L U D E pseudo-i nstruction

A l l i n put f i les must be i n Program-Text E d itor format. They cons ist of a l i n e or
l i nes of AT ASC I I characters terminated by AT ASC I I E nd-of-L i nes < E O L > .

A system text f i l e (systext) is a n assembly l angu age f i le of symbols and macro
def i n it ions . The programmer can predef ine symbols here for many d ifferent pro­
grams. Some examples are:

• ATASC l l control characters (BS, TAB, E SC, EOL , . .)

• Addresses (entry points i nto C I O, S I O, and channel l ocations)

• Macros

If an assembly error is encou ntered whi l e scann ing a systext f i le, the assembler
aborts with an error message.

The object output f i l e generated by the assembler has a defau lt f i l e extens ion of
0 BJ and is in AT AR I b i nary format. Refer to the ATARI DOS II Reference Manual
for deta i l spec i f ications of b inary format.

The output l i sti ng of the source program generated by the assembler has a
defau lt extens ion of P R N .

The Macro Assembler has a f lex ib le set o f l i st ing control pseudo-ops which a l lows
the user to generate on ly the desired program content.

Page head ing (u n less su ppressed via PS = 0) conta ins the assembler vers ion and
page n umber as we l l as opt ional u ser-spec if ied title information (see T I T L E and
SU BTTL pseudo-ops).

The L I ST pseudo-op (or L command l i ne argument) controls which source l i nes are
l isted. E ach code l i ne l isted begins with 20 col umns of i n formation generated by
the assembler.

Col umn 1 of the l ist ing output is reserved exc lus ively for errors; a l ist ing free of
assembly errors w i l l not have any pr int ing in col umn 1 . An error count is reported
at the end of the assembly. (See Section 1 0, " E rror Codes.")

File Usage 9

SOURCE LISTING
FORMAT

SAMPLE LISTING

10 File Usage

1 2

1 23456789.1 23456789.
E add r# hhhhhhhhhh
R add r = vvvv

L ine that generates code.
E Q U , S ET, I F , etc.

R - L i ne that is sk i pped.
0 addr = vvvv #
R add r

Location a n d or ig in cou nters a re u neq u a l .

+ hhhhhhhhhh
add r hhhh /\addr

Macro-generated l i ne.
Desti nation address of PC rel ative j u mps.

Column

1

2

3-6

6

7

8

9-1 8

1 1 -1 4

1 9-20

21 -80

Description

E rror f lag or b lank . See Section 1 0 for the mea n ing of error f l ags.

B lank .

Address l ocation of this i nstruction (va lue of the location cou nter).

- s ign means l i n e not assembled due to IF . . . E LS E . L i n e on ly l i sted i f
L I ST F i n effect.

sign means the l ocation and or ig in cou nters are u nequ a l .

+ s ign means assembler-generated l i ne. L ine l i sted if L I ST M i n
effect.

hhhhhhhhhh is the resu ltant code. Up to f ive bytes are listed. If L I ST
G or D is i n effect, mult ip le l i nes w i l l be l isted with u p to f ive bytes
on each.

vvvv = va lue of express ion .

Always b lank .

Sou rce statement.

= 009B
= 0030
= 0340
= 0341
= 0342
= 0343
= 0344
= 0345
= 0346
= 0347
= 0348
= 0349
= 034A
= 034B

1 /0 EQUAT E S
E O L = $9B
I OCB3 = $30
I C H I D = $0340
I C DN O = I CH I D + 1
I CCOM = I C DN0 + 1
I C STA = I CCOM+1
I C BA L = I C STA + 1
I C BAH = I C BA L + 1
I C PT L = I C BA H + 1
I C PT H = I C PT L +1
I C B L L = I C PTH +1
I C B L H = I C B L L + 1
I CAX1 I C B L H + 1
I CAX2 = I CAX1 +1

= 0003 O PEN = $03
= 0005 CETREC = $05
= 0009 PUTREC = $09
= OOOC C LOSE = $0C
= 0004 OREAD = $04
= 0008 OWR I T = $08
= 0088 EOF = $88
= E456 C I OV = $E456
= 0040 IOC B4 = $40

'

;F I RST I N I T THE IOC B FOR OPEN

0000# = 5000 ORC $5000

;DATA REG I O N
5000 44323A5445 ;N AME1 D B 'D2 :TEST1 ',EOL

= 0050 BUF1 SZ 80
= 5009 BUF1 *

5009 = 5059 ORC * + BUF1 SZ
5059 50323A9 B N AME2 D B 'P2:',EOL
5050 A230 START L OX # IOC B3
505F A900 L DA #LOW NAME1
5061 904403 STA I C BA L,X
5064 A950 L DA #H ICH NAME1
5066 904503 STA IC BAH,X
5069 A900 L DA #0
506 B 9D4B03 STA ICAX2,X

'
;"OPEN" THE D I SK

506E A903 L DA #O PEN
5070 904203 STA ICCOM,X
5073 2056E4 JSR CIOV
5076 BC4303 L DY ICSTA,X
5079 1 003 /\507E BPL L 1
507 B 4CA250 JM P ERR2

'
;CHAN NEL 4 I S PR I NTER

'
507E A240 L1 LDX # IOC B4
5080 A959 L DA #LOW NAME2
5082 904403 STA I C BAL,X
5085 A950 L DA #H ICH NAME2
5087 904503 STA IC BAH,X
508A A908 LDA #OWR I T
508(9D4A03 STA ICAX1 ,X
508F A900 L DA #0
5091 9D4 B03 STA ICAX2,X

,
;"OPEN" THE PR I NTER

5094 A903 LDA #OPEN
5096 904203 STA ICCOM,X
5099 2056E4 J SR C I OV
509(BC4303 LDY ICSTA,X
509F 1 004 /\50A5 BPL TP1 0

File Usage 11

'
;ERROR - J U ST BRK

SOA1 00 ERR1 BRK
SOA2 00 ERR2 BRK
SOA3 00 ERR3 BRK
SOA4 00 ERR4 BRK

'
;SETU P TO READ A RECORD

SOAS A230 TP1 0 LDX #I OCl33
SOA7 A90S LDA #CETREC
SOA9 9D4203 STA I CCOM,X
SOAC A909 LDA #LOW BUF1
SOAE 9D4403 STA IC BAL,X
SOB1 A9SO LDA #H IGH BUF1
SOB3 9D4S03 STA IC BAH,X

'
;READ RECORDS

'

SOB6 A9SO LOO P LDA #LOW BUF1 SZ
SOBB 9D4B03 STA I C BLL,X
SO BS A900 LDA #HIGH BUF1 SZ
SO B D 9D4903 STA I C B LH,X
so co 20S6E4 JSR C I OV
SOC6 1 004 /\SOCC BPL PRNTR

'
;NEC STATUS ON READ - EOF

'
SOCB COBB TP20 C PY #EOF
SOCA DOD7 /\SOA3 BNE ERR3

'
;PRI NT A RECORD

socc B D4B03 PRNTR LDA I C B LL,X
SOCF A240 LDX # I OCB4
SOD1 9D4B03 STA I C B LL,X
SOD4 A230 LDX # I OCB3
SOD6 B D4903 STA I C B LH,X
SOD9 A240 LDX # I OC B4
SODS 9D4903 STA I C B LH,X
SODE A909 LDA #PUTREC
SOEO 9D4203 STA I CCOM,X
SOE3 A909 LDA #LOW BUF1
SOES 9D4403 STA I C BAL,X
SOE8 A9SO LDA #H IGH BUF1
SOEA 9D4S03 STA I C BAH,X
SOED 20S6E4 JS R C I OV
SOFO BC4303 LDY ICSTA,X
SOF3 1 003 /\SOFB BPL L3
SOFS 4CA4SO J M P ERR4
SOFB A230 L3 LDX # I OC B3
SOFA BC4303 LDY ICSTA,X
SOFD COBB C PY #EOF
SOFF F003 /\S1 04 BEQ L2
S1 01 4CASSO JM P TP1 0

12 File Usage

51 04 A90C L2 L OA #CLOSE
51 06 904203 STA I CCOM,X
51 09 2056E4 J SR C I OY
51 0C A90C LOA #CLOSE
51 0E A230 L OX # IOC B3
51 1 0 904203 STA ICCOM,X
51 1 3 2056E4 J SR C I OV
51 1 6 00 BRK
51 1 7 END

No E RRORS, 39 l abels, $A3E6h f ree.

BUF1 5009 1 #36 2/28 2/30 2/60 3/ 2
BUF1 SZ 0050 1 #35 1 /37 2/35 2/37
C I OV E456 1 #25 1 /51 2/1 2 2/39 3/ 4 3/1 8 3/23
CLOSE oooc 1 #21 3/1 6 3/20
E OF 0088 1 #24 2/45 3/1 2
E O L 009 B 1 #3 1 /34 1 /38

n E R R1 50A1 2#1 8
E RR2 50A2 1 /54 2#1 9
E RR3 50A3 2#20 2/46
E RR4 50A4 2#21 3/ 8
G ETREC 0005 1 #1 9 2/26
I CAX1 034A 1 #1 5 1 /1 6 2/ 4
I CAX2 034B 1 #1 6 1 /45 2/ 6
I C BA H 0345 1 #1 0 1 /1 1 1 /43 2/ 2 2/31 3/ 3
I C BA L 0344 1 # 9 1 /1 0 1 /41 1 /60 2/29 2/61
I C BLH 0349 1 #1 4 1 /1 5 2/38 2/54 2/56
I C B L L 0348 1 #1 3 1 /1 4 2/36 2/50 2/52
I CCOM 0342 1# 7 1 / 8 1 /50 2/1 1 2/27 2/59 3/1 7

3/22
I C DNO 0341 1 # 6 1 / 7
I C H I D 0340 1 # 5 1 / 6
I CPTH 0347 1 #1 2 1 /1 3
I C PT L 0346 1 #1 1 1 /1 2
I CSTA 0343 1 # 8 1 / 9 1 /52 2/1 3 2/40 3/ 6 3/1 1
I OC B3 0030 1 # 4 1 /39 2/25 2/53 3/1 0 3/21
IOC B4 0040 1 #26 1 /58 2/51 2/55
L1 507E 1 /53 1 #58
L2 51 04 3/1 3 3#1 6
L3 50F8 3/ 7 3#1 0

n LOOP 50 B6 2#35
NAM E1 5000 1 #34 1 /40
NAM E 2 5059 1 #38 1 /59 1 /61
OPEN 0003 1 #1 8 1 /49 2/1 0

nOREAD 0004 1 #22

OWR I T 0008 1 #2 3 2 / 3
PRNTR 50CC 2/41 2#50
PUTREC 0009 1 #20 2/58

nSTART 5050 1 #39

T P1 0 50A5 2/1 4 2#25 3/1 4
nTP20 50C8 2#45

File Usage 13

SYM BOL
MAP FORMAT

14 File Usage

When R = S is selected, the short symbol map is pr inted at the end of the p rogram
l ist ing . For each symbol name in the program, the fol lowing is printed:

sa symbol hhhh, where:

< s > is b lank or "s" for a name i nt rodu ced in a systext f i le .
< a > is e ither b lank or

U = u ndef i ned, or
D = doubly defi ned, or
n = not referenced.

< symbo l > is the name of the symbo l .

< hhhh > is the symbol v a l u e i n hexadec ima l , or "mac" if the n a m e is a macro.
Four symbols are pr inted on each l i ne, us i ng the defau l t l i ne length.

When R = F is selected, the fu l l c ross-reference map fo l lows the sou rce l ist ing. On
each l i ne, i n add it ion to the R = S i nformation above, c ross-reference i nformation i s
l isted. E ach reference has the form:

ppp/11

where < ppp > equals page nu mber and < II > equals l i ne n u mber. For a def in it ion
reference, the I i s rep laced by #.

N ames begi n n i ng with a : (loca l symbols) and a? (usua l ly macro invented) are not
i n c l uded in e i ther type of symbol map output.

Symbols def ined i n a systext f i l e appear in the c ross-reference only if they are used
d u ring the assembly; they are f lagged with an s.

STAT EM ENTS

4

LANGUAGE STRUCTURE

A Macro Assembler sou rce program consists of a sequence of statements, com­
ments, and def i n it ions. Statements are the fu ndamental units of assembly. Com­
ments do not affect assembler operat ion or object output. Def i n it ions may be con­
d it iona l ly assembled, saved for later assembly, or repeated.

A l l characters in a statement are converted to u ppercase except those in the com­
ment f ie ld .

A statement is d iv ided i nto three f ie lds: a labe l f ie ld , an operation f ie ld , and a
variable f ie ld .

LABEL FIELD

The l abel f ie ld beg ins with the f i rst character of the statement and is term inated by
a b lank or an end of statement. If a colon (:) is the l ast character of the l abe l f ie ld , i t
is d iscarded . For example:

SYM BX: AOC M E M,X ;comment

SYM BX is the defi ned l abel .

OPERATION FIELD

The operat ion f ie ld beg i ns with the f i rst nonbl ank character after the l abe l f ie ld
and term i nates with the next b lank character. Machine op codes, pseudo-ops, and
macro c a l ls a l l occur i n the operation f ie ld . I f this f ie ld is em pty, the variable f ie ld
must be em pty a lso. For example:

SYM BX: ADC M E M,X ; com ment

ADC is the machine op code.

VARIABLE FIELD

The var iab le f ie ld beg i ns with the f i rst character after the operation f ie ld and is ter­
m i nated by an end of statement. Var iables, express ions, and other argu ments used
by the operation f ie ld appear in this f ie ld . For example:

SYM BX: ADC M E M,X ;comment

M E M,X is the var iable.

Language Structure 15

STAT EMENT
T ERMINATION

COMMENTS

DEFINITIONS

SYM BOLS AND
NAMES

16 Language Structure

A statement is terminated by:

Beg i n n i ng of comment (;), or
E nd-of-L ine, or
Logical end of statement mark (!).

SYM BX:
SYM BY:
SYM BZ:

ADC
ADC
ASL

M E M,X
M E M,X

ASL

;comment

ASL ASL ; 4 statements

In the last example (SYM BZ), one source l i ne conta ins four statements. Three of
them are terminated with an !, the l ast by a ;. I dent ical object code wou ld be
generated if the ! were replaced by E nd-of-L ine < E O L > . When an ! and a ; occur
i ns ide quotation marks, they do not fu nct ion as separators.

A comment begins with a ; fol l owing the variable f ie ld of a statement. A comment
affects ne ither the assembler operation nor the object code generated .

Com ments that begin i n co lumn 1 are fu l l- l ine comments; they beg in with a ; or an
* . (P lease note that an * s ign if ies a comment only when found in c o l u m n 1 - col­
umn 1 of i n put is l isted at col u m n 21 on an output l i st ing.) A comment is ter­
m inated by EOL .

LA B E L: LOA 1 29
;This is a fu l l- l ine comment.
* This is another f u l l- l i ne comment.
F ROG: ST A M E M,X

;This i s a "comment."

This is not a legal comment.
;(above comment needs a ;)

Def i n it ions begin with spec if ic types of statements (MACRO, E CHO, I F) . The end of
a def i n it ion is dependent on what started the def i n it ion, for exam ple, E N DM is
used to termi nate MACRO and E C H O def i n it ions, whi l e E N D I F term inates an I F
range.

A symbol is a sequence of characters that identifies a va lue o r a macro. The f i rst
character cannot be a d igit . Symbols may be any length, but they m ust be u n ique i n
the f i rst s i x characters. The fol lowing characters may b e used in a symbol name:

A-Z The uppercase letters of the a l phabet
a-z The lowercase letters of the a l phabet (converted to u ppercase by the

assembler
May on ly be f i rst character ind icat ing a local symbol
If f i rst character, then the symbol is exc luded from the reference map

@ Addit ional a lpha extension. Cannot be f i rst character of an ident if ier,
s ince it is a l so a prefix for octal n u mbers.

0-9 D igits

NUM B ERS

CHARACT ER
STRINGS

The underl ine c haracter (_) may occur i n a name as written but is d i scarded.
Lowercase letters are mapped i nto the correspond i ng uppercase. When a colon oc­
curs as the f irst character in a name, it denotes a name local to the current PROC
(see PROC pseudo-op in Section 6). A colon at the end of a name in the l abel f ie ld is
interpreted as a terminator but in any other position, it i s ignored .

Examples:

ERROR_S

TEST

: LOCA L:

JM P

LDA
BNE
DEC

RESTART

COUNT
E rrorS

;the assembler ignores _, label is
ERRORS
;the assembler uses f irst 6
characters: 'REST AR'

; 'E rrorS' converted to ERR ORS
;: loca l : is a l ocal symbol

A number can be in any one of three forms, depend ing on the prefix.

Prefix Base

% 2 B inary
@ 8 Octal
$ 1 6 Hexadec imal

The lack of a prefix imp l ies dec imal.

D igits greater than the radix are not a l l owed. The under l i ne character (_) is
ignored .

The Macro Assembler prov ides constant convers ion formatt ing for 6-byte real
numbers as specif ied in the current AT A R I BAS IC Real numbers are not va l id ex­
pression arguments i n variable f ie lds. (See " REA L6," pseudo-op i n Section 6).

Examples:

B l NV A L
OCTVAL
HEXVAL

EQU
EQU
EQU

%1 0 001 01 0
@21 2
$8A

The assembler accepts AT ASCI I characters $20-$7E as valid characters. A char­
acter str ing cons ists of any sequence of c haracters surrounded by s ingle quotation
marks ('n . . . n'). With in a str i ng, a s i ngle quotation mark character is represented by
two success ive s i ngle quotation marks.

Character str ings can be used i n the T I T LE and SUBTTL statements, as a DB or DC
subf ield, or as operands of rel at ional operators.

The LSTR operator returns the length of a character string (see "Express ions" i n th is
section).

Language Structure 17

EXPRESSIONS

OPERANDS

18 Language Structure

Examples:

T I T L E
D B
D B
D B

ow
LOA
ADC
CMP

'Sample E xpressions'
'This i s a STR I N C .' ,$9B
'Control characters are i l legal i n a long stri ng'
$9B

$2766,
#43
#'C'
#''''

;Nonpr intable characters may be represented
;by using their hexadec imal va lues,' ,
; such as $9B for E OL',
'bp', ' B P' ;2-byte va lues
;a dec ima l number
;an AT ASC 11 character
;an AT ASCI I character

An express ion cons ists of operands combined with operators to produce a va lue.
Operators of equa l precedence are evaluated left to right. B rackets can be used to
overr ide the order of eva luation, s ince 6502 i nstructions use parentheses for i n­
d i rect address i ng. Express ions are eva luated us i ng 1 6-bit twos complement (un­
s igned) ar ithmetic . Overf low is ignored.

Real numbers are not va l id arguments i n express ions .

Examples:

D B
D B
D B
A N D
ow

'Here are some fancy express ions:'
43 + 22 shl 3 mod 6
'Q' + R E F1 xor [99 and R E F2]
low ['ZZ' - ['A' xor 'a' + ['A' xor 'a'] shl 8]]
rev [*0 - * L]

A n operand is either a symbol , an express ion enc losed i n brackets, a number, a
character stri ng, or one of the fol l owing spec ia l e lements:

* current location counter
* L same as *
* O current value o f or igin counter
* P current posit ion counter number of defined byte

See LOC and ORC pseudo-ops for further d iscuss ion of * L and * O. Refer to the
VFD pseudo-op for deta i l s on * P.

The com parison operators return a value of zero for fa lse and $ F F F F for true.
Numeric tests treat va lues as uns igned, so that [-1 < 0] w i l l produce the answer
fa lse. Character str ing tests use the AT ASC 11 col lat ing sequence.

Operators

+

I
NOT
A N D
&
O R
XOR

< >
<
< =
>
> =
S H L
S H R
H I G H
LOW
MOD
REV
DEF
LSTR

EQ
N E
LT
L E
C T
C E

Sum or posit ive sign
D i fference or negative sign
Mult i p ly
D ivide
Bit-by-bit complement
Logica l product, conjunct ion
Logica l product, conjunct ion (same as A N D)
Logica l sum, d isjunct ion, i nc lusive OR
Logical d i fference, i nequiva lence, exc lus ive OR
Equa l i ty
I nequa l i ty
Less than
Less than or equal to
Greater than
Greater than or equal to
Sh i ft left n bits
Shift right n bits
Unary, h igh value to 8-b it f ie ld = x I 256
Unary, low value to 8-b it f ie ld = x MOD 256
Modulus function
Unary Reverse = ((LOW x) left and right SHL 8) + (H I G H x)
Test symbol prev iously defined
Return the length of a character str ing

Precedence Levels

Highest B rackets
H I G H LOW DEF REV LSTR
* I MOD S H L S H R
+ unary
+ binary

< > < < = > > = N E EQ LT L E CT CE
NOT
& A N D

Lowest OR XOR

Language Structure 19

MACRO
DEFINITION

5

MACRO FACILITY

A macro is a seq uence of source statements that are saved and then assembled
through a macro c a l l . A macro c a l l cons ists of a reference to a macro name in the
operation f ie ld of a statement. It often i n c l udes actual parameters to be
subst ituted for formal parameters in the macro code sequence, so that code
generated can vary with each assembly of the def i n it ion .

Use of a macro requ ires two steps: def i n it ion of the macro and reference to the
macro.

A macro definit ion cons ists of three parts: head ing, body, and term inator.

Heading

Body

Terminator

A macro def in it ion starts with the name of the macro and the
substitute parameter names in the variable f ie ld .

The body begins with the f i rst statement after the head i ng that is
not a comment l i ne. The body cons ists of a ser ies of i nstruct ions .
Al l i nstructions other than E N D, i nc lud i ng other macro def i n it ions
and ca l ls, are legal w i th in the body. H owever, a def in it ion with in
a def i n

.
it ion is not def i ned u nt i l the outer def in it ion is ca l led.

Therefore, an i nner def i n it ion cannot be ca l led d irectly.
Substitute parameters can occur anywhere in the body. They are
pref ixed by a percent sign (%):

% 1 f irst parameter
%2 second

%9 n i nth parameter
% K 4 hex d ig its, represent ing the ser ia l nu mber

of this macro c a l l
% L the labe l f ie ld of the macro ca l l
% M = the name o f the macro
% % = replaced by a s i ngle percent

A macro def in it ion is term i nated by an E N DM pseudo-i nstruct ion.
The assembler cou nts the nest ing level of MACRO/ECHO and
E N DM pairs occurr ing i n a macro body, so that the def in it ion is
term i nated on ly by the correspond i ng E N DM.

Note: The E N DM pseudo-op m ust be preceded by a tab (�) c haracter. Press
emmmJ to get the tab character.

Macro Facility 21

MACRO CALL

CODE
DU PLICATION

NESTING

22 Macro Facility

A prev iously def ined macro is ca l led when its name occurs i n the operation f ie ld of
a statement. If actua l parameters appear i n the cal l , they are substituted for the
corresponding formal parameter in the macro body w ithout eva luation. On ly after
the ent i re body has been expanded does assembly resume. T hus the statements
generated by the macro may themselves contain further macro ca l l s or def i n it ions,
with the nesting l i m ited only by ava i l able memory.

Note: When writ ing recurs ive macros, take care in the cod i ng of the term i n at ion
condit ion(s). A macro that repeated ly ca l ls itse l f w i l l cause the assembler to ter­
m i nate (eventual ly) with the message "Memory Overf low."

The E C H O pseudo- instruction is used to repeat a code sequence. I t is written
s i m i lar ly to a macro def in it ion but w it h the fol lowing d i fferences: heading is E C HO,
not MACRO; no parameters are involved; the variable f ie ld of the E C H O statement
spec if ies how many times the body is to be repeated. E N DM is a l so used to ter­
m inate an E C H O sequence (see ECHO pseudo-op).

ECHO, MACRO, and I F blocks m ay be nested in completely arbitrary fashion, sub­
ject on ly to the constra int that it be properly nested; i .e . , each block must be con­
tai ned with in the surround ing block.

ASS ERT

6

PSEUDO-OPERATIONS

The Macro Assembler prov ides a comprehens ive set of pseudo-operat ions (pseudo­
ops) that perm its you to control the assembly process.

For ease of comprehension, the fol lowing notations are u sed i n this manua l :

iglab

<exp>

[exp]

{exp}

means the l abel f ie ld is ignored by the pseudo-op

means that an express ion is requ ired

means that an express ion may appear, at your option

means that the item i ns ide the braces { } may appear zero or
more t imes

CHECK ASSEMBLY CONDITION

iglab ASS E RT < exp >

where: iglab
exp

ignored l abe l f ie ld
any legal express ion: Nonzero imp l ies true

Zero imp l ies false

ASS E RT a l lows you to c heck for and f l ag i l logical assembly cond it ions such as i n­
correct parameter va lues, programs that are too l arge, and u ndef i ned symbols .

The express ion is eva l u ated and a P error w i l l be generated if the express ion is fa l se;
i .e . , if the express ion eva lu ates to zero.

The express ion is not exam i ned in Pass 1 of the assembler, so ASSERT can correctly
check any condit ion . Forward references i n the expression are eva luated correctly.

Examples:

To c heck that the location cou nter i n a given piece of code is with in bou nds, i n th is
case be low $2000, add the fol lowing l i ne at the end of the assembly:

ASS E RT * < $2000;test for l i m i t exceeded

If the location cou nter reaches $2000, a P error w i l l generate.

If you are wr it ing a ut i l ity subroutine and wish to c heck that a requ ired symbo l ic
def in it ion has been supp l ied by the user of the subroutine, you m ight code:

Pseudo-Operations 23

DB

DC

OS

24 Pseudo-Operations

ASSE RT D E F [SYM B1]

I f the required symbol SYMB1 is not defined by the user with in the assembly, a P er­
ror w i l l be generated. Note that the c heck for symbol definition is postponed u nt i l
after Pass 1 , a l lowing you to define SYMB1 anywhere i n the source code.

DEFINE BYTE

LA B E L : D B < exp > . . . , < exp >

where: < exp > = any lega l expression, va lue, or stri ng

DB a l l ows you to directly specify the content of indiv idua l bytes of memory.

A string wil l generate as many bytes as it has characters; the f i rst character wil l be
the first byte generated. Characters in the str ing generate their 7-bit ATASCI I codes
without parity.

DB is used to intersperse code with text strings and for data tables.

The l abel f ield is sign if icant; it wil l address the first byte generated.

Examples:

PNCHRS : DB

DB
DB

' , . / ; @ @ < > ? + !' '#$%&' '()_ * = + (tm):-[]@ ',O
$80
LA B, LA B2 ,3,$46,$0A F,'xX',1 7 + QVA L * 4, 'coffee'

DEFINE CHARACTER

LA B E L : D C < exp > . . . , < exp >

where: < exp > is any legal expression , val ue, or string

DC operates l ike DB, but the h igh-order bit (parity bit) of the last byte of each ex­
press ion is set.

DC is used j ust l ike DB . The on ly difference is the parity bit of the l ast byte of each
term.

Examples:

T B L H D R DC 'This is a table of offsets'
A DR LST DC 1 28, $36, $1 5 , @21 , 1 59

DEFINE SPACE

LAB E L: OS < exp1 6 >

where: < exp1 6 > = any legal express ion, val ue, or string

OS a l l ows you to reserve la rge b locks of memory. The expression < exp1 6 > wil l be
eva l uated as an unsigned 1 6-bit va lue, and that va lue w i l l be used to increment the
assembler's internal orig in and location cou nters.

1
I

�

ow

ECHO ... ENDM

Memory a l located is not init ia l ized, and w i l l conta i n unk nown va lues at program
execution time. The l abel f ie ld is s ign i f icant; it w i l l add ress the f i rst memory byte
al l ocated.

DS reserves space for use at execut ion ti me; it can be used to "skip over" an ex­
ist ing piece of ROM or prov ide for u n i n i t ia l ized data storage.

Example:

STORG: DS 256 ; a l l ocate 256 bytes

DEFINE WORD

L A B E L : DW < exp1 6 > .. , < exp1 6 >
< exp1 6 > = any express ion o r va lue o r 1 to 2

character str ing

where: < exp1 6 > = any expression, val ue, or str ing

DW defines the contents of b locks of memory. Val ues and expressions in the
operand fie ld are computed as u ns igned 16-bit va l ues and placed in memory as a
mach ine word; the assembler p laces the Least S ignif icant Byte (LS B) f i rst, fol l owed
by the Most S ign if icant Byte (MSB).

The l abel f ie ld is s ignificant; it w i l l add ress the first byte generated .

DW is i ntended to bu i ld tables of 1 6-bit val ues.

Examples:

Tab l e of Add resses
DW PWRON ; Power on
DW MSTRST ;Master reset
DW SYSCAL ;System cal ibrate
DW RE CAL ;Reca librat ion
DW PWRDN ; Power down
DW BUTTON ; Button press
DW E M E RG ;E mergency shutdown
DW ACTN1 ,ACTN2,ACTN3 ;Action n u m bers 1,2,3
DW 0 ;E nd of tab l e

ECHO BLOCK

LA B E L: E C H O < exp >

E N DM

where: < exp > = numeric express ion

ECHO . . . E N DM is a s imple code-dup l ication facility . Code between an ECHO and
its E N DM w i l l be assembled as many ti mes as specified by the < exp > .

The l abel f ie ld is s ign ificant; it add resses the va lue of * O when the ECHO pseudo­
op is encou ntered.

Pseudo-Operations 25

EJECT

END

26 Pseudo-Operations

An E C H O . . . E N DM construct may not exceed 255 repetitions; 0 (zero) repetit ions
means the E C H O . E N DM code is sk i pped. E C H O . . . E N DM is convenient for
repetit ious cod ing problems. An E C H O E N DM sequence is much easier to
create and ma i ntain than, say, 1 27 repetit ions of a 6- l i ne procedu re.

Note: The E N DM pseudo-op must be preceded by a tab (�) character.

Example:

; The fol l owing example w i l l c reate a table
; of 20 entries of 4 bytes each and
; i n i t ia l ize each entry to a value of
; $1 0 37 00 00.

T A B L E :

EJECT PAGE

ig lab E JECT

E C H O
D B
E N DM

20
$1 0, $37, $00, $00

ig lab = ignored label fie l d

;20 times

;E nd table

EJECT forces a page eject i n the assembly list ing if the list i ng is cu r rently tu rned on.

E J ECT can be used anywhere i n an assembly sou rce program.

The T I T L E pseudo-op sets the internal tit le string and forces an E J ECT.

Example:

E J ECT

EN D PROGRAM

LA B E L: E N D [exp]

E N D te l l s the assembler where to stop assembly and beg in the c ross-reference
map. The optiona l address f ie ld express ion specif ies the ru n address for an object
program.

E N D must be the l ast statement of the last link f i l e of an assembly.

The l abel f ie ld is significant, and add resses the va lue of the i nterna l *O cou nter
when the E N D is processed.

Example:

F R E E SP : E N D ;end of program

EQU or

ERR

IF ... ENDIF,
IF ... ELSE ... ENDIF

EQUATE VALUE TO SYMBOL

LA B E L : E Q U < exp1 6 >
LA B E L : < exp1 6 >

where: < exp1 6 > = 1 6-bit expression or val ue or
1 to 2 character str ing

EQU defi nes the symbol on the l eft as the value of the 1 6-bit express ion in the
operand f ie ld .

EQU c reates symbols (labe l s) for use with other assembler i nstructions. U n like S E T,
E Q U defines a f ixed value to a symbol that cannot be changed du r ing the
assembly.

The operand < exp1 6 > must be an abso lute va lue at the time of eva luation; any
symbols used i n the expression must have been prev ious ly defined .

Examples:

TSTC H R
TS2C H R :
ZAP
ZON K :

E Q U '$'
EQU '@'
E Q U $900

ZAP * 2

FORCE ERROR FLAG

E R R a l l ows you to force an assemb ly error. The add ress f ie ld is ignored. When the
assembler detects an imposs ib le or u ndesirab le condition at assemb ly time, E RR
a l l ows this to be f l agged .

Examples:

I F * > 4000h
E RR ; Program too long
E N D I F

ig lab I F < exp >
< code for special s ituation >

ig lab E N D IF

ig lab I F < exp >
< assembly code >

ig lab E LS E
< assembly code >

ig lab E N D I F

where: < exp > expression : nonzero = > true
zero = > f a l se

Pseudo-Operations 27

INCLUDE

28 Pseudo-Operations

I F . . . E N D I F and I F .. . E LSE . . . E N D I F control textual i nput to the assembler . At
assembly time, <exp > is eva l uated and the resu l t determines where the assembler
w i l l resume assembl i ng the input file.

Whenever a s ing le program shou ld be conf igured as two (or more) d ist inct versions,
I F . . . E N D I F and I F . . . E LS E . . . E N D I F can test assembly-time va lues and assemble
only the appropriate sou rce l i nes.

E xpress ion <exp > va lues for an I F must be numeric; strings greater than two
c haracters are not a l l owed.

I F . . . E N D I F and I F . . . E LSE . . . E N D I F constructs are " nestable"; depth of nesting
is l imited only by memory space avai lab le at assembly time.

Any " l abel" in the label f ie ld is ignored; a desc r ipt ive name can be p laced here to
he l p associate an I F w ith its E LS E (if u sed) and E N D I F .

Examples:

LABE L :

LA B E L :

I F
J S R
JM P
E N D I F
I F
J SR
J M P
JM P
E N D I F

1
OUTM
BOOT

D E F X
PAT H1
E LSE
PATH2

INCLUDE ANOTHER SOURCE FILE

LA B E L : I NC L U D E <filespec >

;1 is nonzero, therefore true

;these two I ines wil I be assembled

;Cond it ion
;LA B E L is ignored, but
;ass ists readabi I ity.

where: <f i l espec > = <Dn:f i lename.ext > , n can be 1 , 2, 3, or 4

I NC L U D E spec ifies another f i l e to be inc l uded i n the assembly as if the contents of
the referenced file appeared in p lace of the I NC L U D E statement itse l f . The inc l u­
ded fi le may conta i n other I NC L U D E statements. The list ing of code in I NC L U D E
f i les i s contro l led by the I option o f the L I ST pseudo-op. (See I NC L U D E example.)

I NC L U D E a l l ows you to d iv ide la rge programs into manageable p ieces for ease of
ed iting, common use of librar ies, f i l e man ipu lations, and so forth.

Example:

The command line
D : I NCLDEX.ASM

combined w ith the fo l lowi ng, fi le setu p:

<I NCLD E X.ASM contents >
T I T L E
ORG
I NC L U D E
I NC L U D E
I NC L U D E

; * * * E nd I NC L D E X.ASM

' I N C L U D E example'
$1 00
D:L1
D:L2
D2 :L3.ACD

LINK

< D: L 1 contents >
LOA

; * * * E nd L1 . ASM

< D : L2 contents >
L OA

;* * * E nd L2 .ASM

< D2 : L3 .ACD contents >
L1 VAL D B
L2VAL D B

E N D
; * * * E nd L3 .ACD

L1 VAL

L2VA L

'* '
0
; Stop assembly here.

This would i nput to the assembler the fo l l owing sequence of code:

T I T L E
ORC
LOA

· * * * E nd L 1 .ASM
LOA

; * * * E nd L2 .ASM
L1 VAL D B
L2VAL D B

E N D
; * * * E nd L3.ACD
·* * * E nd I NC L DE X.ASM

LINK TO ANOTHER SOURCE FILE

ig lab L I N K < filespec >

' I N C L U D E example'
$1 00
L1 VAL

L2VA L

' * '
0
;Stop assembly here.

where: < filespec > = < Dn : fi lename.ext > , n can be 1 , 2 , 3, or 4

The L I N K pseudo-op is simi la r to the I NC L U D E facil ity, except that l ink f i les are not
assembled until the assembler reaches the end of the current i nput f i le. Whenever
a L I N K pseudo-op is found, it is stored away for processing a long with any other
L I N K statements encountered when the current file is f i nished processing.

E ach source f i l e that contains links to other files w i l l be completely processed, and
its links wil l then be processed in order of occurrence. Any l i n k that contains
sub l inks wil l be processed i n an identica l manner; l ink f i les may nest arbitrar i ly
deep, as long as the total number of files does not exceed 40.

If A, Q, S, T, U, and X are assembly-code files, and if A l i nks to Q, S, and X, and S
l inks to T, and T l i nks to U, then the order of assembly w i l l be:

A, Q, S, T, U, X.

If the < fi lespec > extens ion is missing, it defaults to the extens ion used in the cur­
rent i n put fi le; i .e., the f i l e that contains the L I N K pseudo-op.

Pseudo-Operations 29

30 Pseudo-Operations

Examples:

B LORP :

L i n k

L I N K
L I N K

D2: PART1

D : U T I L .ACD
D 2 : PART2.ASM

;Assemble f i le ' D2 : PART1 '

;us ing the same extens ion as
;the pr imary f i le

;' BLORP' is ignored

L I N K a l lows you to d ivide l a rge programs i nto manageable p ieces for ease of
edit i ng, common use of l ibraries, f i l e manipu l at ions, and so forth. The L I N K fac i l ity
supports l i n k i ng across d i skettes, so the entire source program does not have to be
conta ined on the same d i skette.

Example:

The command l i ne

AMAC D : L I N K E C .ASM

combined with the fol lowing l i n k f i l e setup:

< L I N K E C .ASM contents >

·* * * '

T I T L E 'L I N K example'
ORC $1 00
L I N K D : L 1
L I N K D : L2
L I N K D2 :L3.AC D
E ndx L I N K E C .asm

< D : L 1 contents >
L DA L1 VAL

L 1 .asm ·* * * E ndx
< D: L2 contents >

LDA
·* * * ' E ndx

L2VAL
L2 . asm

< D 2 : L3.ACD contents >
L1 VAL D B ' * '
L2VAL D B 0

E N D ;Stop assembly here.
· * * * E ndx L3.acd

wou ld input to the assembler the fol lowing sequence of code:

T I T L E ' L I N K example'
ORC $1 00

·* * * E ndx L I N K E C . asm
LOA L1 VAL

·* * * E ndx L 1 . asm '
LOA L2VAL

·* * * E ndx L2 .asm '
L1 VAL D B ' * '
L2VAL D B 0

E N D ;Stop assembly here.
·* * * E ndx L3.acd '

LIST OUTPUT LISTING CONTROL

ig lab
ig lab

L I ST
L I ST

*
< opt > . . , < opt >

where: < opt > = optional minus sign fo l l owed by one of the fo l l owi ng.

C L ist l ist ing controls: EJ ECT, PAGE, S PACE, S U BTTL, and T I TLE l i nes (Defau l t
OFF)

D L ist detailed code: i .e . , l ist every byte generated by DB , DW, VFD, mu lti-l ine
statements, and so forth.

F L ist code sk i pped by IF . . E N D I F or IF .. ELSE . .. ENDIF . (Defau l t O N)

G List all generated code: i.e . , l ist every byte p laced i n the output object f i le ,
regard l ess of origin . Overrides -L. (Defa u l t OFF.)

L ist code i n I NC L U DE f i l es. (Defa u l t OFF .)

L Master L I ST control . When -L option is i n effect, noth ing is l isted except l i nes
with errors, or when -L is overr idden by the G option. (Defau l t ON.)

M L ist a l l l i nes generated by macro references. (Defau l t O N .)

R Accumu l ate cross-references. (Defau l t O N .)

S List code referenced i n a systext f i l e. (Defau l t OFF.)

L I ST contro ls the l ist ing produced dur ing an assembly. However when an L = O
command l i ne option is selected, L I ST pseudo-op has no effect. The var iable-f ie ld
argument to L I ST must be an * , or a set of options.

The LI ST pseudo-op operates on a stack : each e lement of the stack is a set of op­
tion f l ags. The f l ag on top of the stack controls the content of the l ist ing produced.
Each c a l l to the L I ST pseudo-op w i l l push, or pop, a f l ag on or from the stack .

"L I ST * " means pop the l ist-option stack .

"L I ST M" means make a copy of the cu r rent f l ag, sett ing the M-f lag to O N , and
push the new f lag sett ing onto the stack.

L I ST has obvious appl icat ions for detai led l ist ing of newly wr itten code, deta i led
I ist ing of untested macro expansions, and suppress ing the I ist ing of I ibrary code.

Example:

A common code l ibrary may conta in a set of routines a l l having the fol lowing I F
b loc k a t the begin n ing:

I F
L I ST
E N D I F

I L I ST = 0
-L, -R

; if common code l ist tu rned off
;no l isti ng, no references

Pseudo-Operations 31

LOC

32 Pseudo-Operations

Assume that the g lobal symbol I L I ST equa ls zero. A new f l ag sett ing is pushed onto
the L I ST option stack; the options (-L, -R) specify no l i st ing is to be pr i nted, and no
c ross-reference accumu l ation is to be done.

E ac h common code rout ine a l so has this I F . . . E N D IF at its end:

I F
L I ST
E N D I F

I L I ST = 0
*

;if common code list ing was off
;go back to or igina l l i st options

Now that the common code routine has been assembled, the L I ST option stack w i l l
b e popped. T h i s retu rns the L I ST option stack t o its condition before the library was
assembled.

SET LOCATION COUNTER

LABE L : LOC < exp1 6 >

where: < exp1 6 > 1 6-bit expression or va lue

LOC sets the location cou nter. The expression is eva l u ated as an u nsigned 1 6-bit
va l u e and assigned to the Macro Assembler's i nternal location cou nter (* L).

Code generated while the internal LOC cou nter (* L or *) does not eq u a l the internal
ORC cou nter (*0) w i l l be f l agged with # in co l umn 7 of the list i ng.

The l abel f ie ld is s ignificant; the l abel def ined there wi l l be set to the va l u e of *L
before * L is changed to < exp1 6 > .

LOC assists you i n generating self-over lay ing programs. Code generated that way
can be posit ioned anywhere in memory (using O RC), and the code w i l l assemble as
if it was l ocated at the add ress expressed in the LOC statement. Of cou rse, the code
must be moved at ru n time to the address spec ified in its LOC statement before it
can be executed.

Code assembled in one p lace for execution e l sewhere can be especia l ly handy for
ROM-resident software, when pieces of code are copied f rom ROM to RAM before
execution.

LOC is a l so usef u l for enhancing the readabi l ity of data tab les for code conversion .
T h e fo l l owing example is a tab l e o f external B C D codes. T h e location cou nter is set
to the ATASCll va lue of the first c haracter in the table. I n that way, the location
f ie ld of the assembly listing contains an AT ASC I I va lue and the generated code
f ie ld contains its associated external BCD value .

Examples:

0000
5000

5000
0041 #

; E xample of using LOC to enhance readabil ity of
;l i st ings . The location cou nte r wil l be set to
;the ATASC l l va lue that corresponds to the first
;entry of a tab le of external BCD val ues.

O RC $5000
LOC 'A'

MACRO .. . ENDM

0041 # 61 E BCTBL : DB $61 ;The LOC f ie ld of the l i sting
0042# 62 D B $62 ;conta ins the ATASC l l va lue
0043# 63 D B $63 ;wh ich corresponds to the
0044# 64 D B $64 ;external BCD va lue in the
0045# 65 D B $65 ;generated code fie ld .

N o E RRORS, 1 labels , $2403 f ree.

n E BCTBL 0041

E N D

1 # 8

;E xample of code to be assembled at $2000
to be

;transferred to a ROM at $0FOOO

= 0500 COU N T E Q U $0500

0000 = 2000 ORC $2000
2000 = FOOO# LOC $0FOOO
FOOO# A907 LDA #07
F002# 8DOOOS STA COU N T
FOOS# 4COAFO JM P L1
F008# E A NOP
F009# E A N O P
FOOA# C EOOOS L1 D E C C O U N T
FOOD# E A N O P
FOOE# E N D

N o E RRORS, 2 labels , $23F7 free.

COUNT 0500
L 1 FOOA

MACRO DEFINITION

MACN AM: MACRO
< body >
E N DM

1 # 4 1 / 8 1 /1 2
1 / 9 1 #.1 2

parm1 , . . . , parmn

;end of MAC NAM defin ition

where: < body > = any des i red text wh ich may inc l ude:
%1 . . %9 parameters number 1 . . . 9

;RAM work ing
storage

% K hexadecimal number of th is macro c a l l
% L l abel f ie ld of macro c a l l
%M name of the macro

MACRO . . . E N DM is the macro definit ion construct.

The symbol s in the variab l e f ield represent substitutable parameters. The symbol
names are for documentation purposes on ly and may not appear in the body of the
macro.

Parameters within the macro are represented by %x, where x is rep laced with a
dec imal digit (1 -9). %K with i n the body wil l be repl aced with the serial number of
the macro c a l l as four hexadecimal d igits. %L with i n the body w i l l be replaced
with the label f ie ld of the macro c a l l . %M w ithin the body wil l be rep laced with the
macro ca l l .

Pseudo-Operations 3 3

34 Pseudo-Operations

The l abel f ie ld is s ignificant; it denotes the name of the macro d u r ing an assembly.

Note: The E N DM pseudo-op must be preceded by a tab (�) c haracter.

Macros may generate l i nes wh ich turn out to be macro ca l l s . Thus, a macro may
d i rectly or i n d i rectly call itself. Care must be taken so that such a "recu rsive
macro" does not c a l l itself i ndef i n itely.

Macros can be u sed to generate many copies of a procedu re with different internal
constants, o r in conju nction with VFD to assemble fancy mach ine op codes (see
V F D pseudo-op). There are many other potent ia l uses for macros; these examples
are on ly i ntended to demonstrate some of these uses.

Example:

One way to f ind the number of bits needed to conta i n a va l u e is to compute the
logarithm base 2 of the val ue. To do that at assembly time, we can use recu rsive
macro c a l l s to achieve a looping effect. Note that the condition tested on VAL en­
su res that the series of nested ca lls must eventu a l ly terminate.

LOG2 :

%1 :

%1 :

Example:

COMPUTE SYM = Log 2
MAC RO SYM,VAL
IF [%2] > 1
LOG2 %1 ,[%2]/2
SET %1 + 1
E LS E
S E T 0
E N D I F
E N DM

;macro to take the high n ibb le f rom a memory location
;and the l ow n ibb le f rom the accumulator, storing the
;result i n the accumul ator

N P ACK:

Example:

MAC RO
EOR
A N D
E O R
E N DM

ADDR
%1
#OF
%1

I t is sometimes necessary to be able to create a symbol name that is d ifferent for
each call of a macro. T he %K implic it parameter featu re provides the means to do
th is . In the fo l lowing macro, a u n ique jump-target l abel is c reated o n each ca l l .
Note that all the labe ls begin with the ? character s o that they w i l l not c l u tter u p
the symbol table map.

PARVAL :

?%K:

Set accumu l ator = 0 if sign bit is set.
MACRO
BMI ?%k
LOA #0

E N DM

ORC

PROC ... EPROC

ORIGIN COUNTER

L A B E L : ORG < exp1 6 >

where: < exp1 6 > any abso lute, prev ious ly defined 1 6-bit
va lue or expression

ORG sets the add ress of the f i rst byte of a piece of code (or data) to a physical loca­
tion in memory.

The label f ie ld is sign i f icant; it wil l address the va lue of * L, before < exp1 6 > is
eva luated .

The ORG command can be used i n a program as often as des i red . ORG cannot
change the cu rrent USE b lock . (See USE pseudo-op.) ORG changes the b lock­
relative va lue of the or igin and location counters of the cu r rent U S E b lock .

O RG is a lmost a lways used at the begin ning of an assembly to def ine the starting
pos it ion in memory of the resu l tant code. If not exp l i cit ly set by ORG (or the 0 =
command- line parameter), the defau l t va lue of the origin and location cou nters is
zero.

Example:

PROG :
SOCK :

ORG
ORG

$1 00
* O

DEFINE LOCAL SYMBOL RANGE

LA B E L : PROC
< body >
E PROC

;Assemble at location $01 00
;assign * O to * O and * L

PROC te l l s the assembler that the fol lowing code is a procedu re that may contain
local symbols . A local symbol is a symbol that begins with a colon (:) . It does not
appear in the c ross-reference map and cannot be referenced outside of the PROC
range.

The labe l fie ld is significant; it addresses the value of the * O cou nter when the
PROC statement is processed.

PROC shou ld be the first instruction of any proced u re that contains l oca l symbols .

A PROC is terminated by E PROC or the next PROC.

When assembling large programs where symbol table space is at a premi um, l ocal
symbol s can be used whenever appropriate to reduce memory requirements.

Example:

I N I T :

: Loop:

PROC
LOA
LOY
STA
I NY
BN E

#0
#0
(B E G M E M),Y

: LOOP

;procedu re
; let A = O
;Y indexes through memory
; : Loop: is loca l symbol
;-won't appear in cross- reference
;Write 256 l ocations

Pseudo-Operations 35

REAL6

S ET

S PACE

36 Pseudo-Operations

DEFINE REAL NUMBER VALUE

LA B E L : R E AL6 < fpnum >

where: < fpnum > is a f loating point number

R EAL6 prov ides constant conversion into 6-byte real numbers as supported by the
AT A R I operating system.

The l abel is s ign i f icant because it denotes the start ing location of 6 bytes of the
converted number.

Example:

P l : REAL6 3.1 41 59

DEFINE VALUE FOR SYMBOL

LA B E L: SET < exp >

where: < exp > = numeric express ion

The SET pseudo-op defines a symbol to a va lue representing the 1 6-bit expression
of the operand f ie ld . SET works just l i ke EQU, except that LA B E Ls defined with S E T
may b e redefined .

The expression i n the variable fie ld must be an absolute value at the time of
eva luation . Any symbols used must have been previous ly def i ned.

Example:

TSTVAL SET 027h

DB

TSTVAL S E T 099h

TSTVAL SET 063h

OUTPUT BLANK LINES TO LISTING

ig lab
ig lab

S PAC E
S PACE

< exp1 >
< exp1 > , < exp2 >

TSTVAL

where: < exp1 > , < exp2 > = unsigned, numeric expressions

S PACE p laces blank lines in a list i ng. I f S PACE has one argument, i t wil l output that
many b lank lines on ly if doing so w i l l not exceed the length of the current page. I f
< exp1 > l i nes wil l not f i t on the current page, SPACE wil l force an E J E CT.

SU BTTL

TITLE

If S PAC E has two arguments, they are both eva luated and < exp1 > blank l i nes w i l l
be p laced i n the (currently on) list ing only if the current page wil I have < exp2 >
l i nes left afterwards. I f the current page does not have that suff ic ient room, S PACE
wil l force an E J ECT.

S PAC E is useful when inserted just before a smal l procedure if X i s the length of the
procedure (X lines),

S PAC E 4,X
< procedure >

w i l l output 4 l i nes to the l isting if the procedure w i l l st i l l fit on the current page. I f
the spac i ng a n d the procedure wil l not f i t on the current page, S PACE w i l l force a n
E J ECT .

DEFINE SECON D LINE OF OUTPUT LISTING

ig lab SU BTTL < string >

where: < string > = any string u p to 32 c haracters

SU BTTL a l l ows you to specify second ary tit le information. SU BTTL without a
< string > argument is ignored. To erase the current subtitle, use an empty string.

Example:

T I TL E
SU BTTL
SU BTTL

'Section 8 - Pseudo-Ops'
'SU BTTL syntax and descr iption'
' ' ; erase current subtit le

DEFINE FIRST LINE OF OUTPUT LISTING

ig lab T I T L E < str ing >

where: < str i ng > = any string up to 32 c haracters

T I T L E a l lows you to set/reset the assembler's internal page-head ing string. T I T L E
with a string argument wil l p lace that str i ng i n the page header (see "Sample
Listi ng," Sect ion 3). I f the str i ng contains zero characters, the page header is reset
to empty. T I T L E without a string argument does not a l ter the current page header.

The f i rst c a l l to T I TLE * wil l not eject a listi ng page; success ive c a l l s w i l l a lways
force an E J E CT after any arguments are processed .

T I T L E is commonly p l aced at the beginn i ng of each file used in an assembly. E ach
l inked f i l e wil l begin assembly on a f resh page, topped with an appropriate header
to describe its general contents.

·

Example:

T I T L E 'XONC.asm - I nterface Subroutines.'

Pseudo-Operat ions 37

USE

VFD

38 Pseudo-Operations

DEFINE BLOCK AREA

ig lab U S E name

U S E estab l ishes a new " U S E b lock" or resumes use of a prev ious ly estab l ished
b lock . The block in use is the b lock i nto wh ich code is subsequent ly assembled. A
p rogram may conta i n u p to 60 d i fferent U S E b locks . The assembler is respons ib le
for computing the length and actu al or ig in of each b lock . Or ig ins are assigned to
each b lock in the order they are f i rst encountered.

Assoc iated with each USE block are regi sters to mainta in the last va l ues of the
or ig in and pos it ion counters (*0 and * P). See O RC and VFD for a descr ipt ion of
those cou nters. I n it ia l ly , the va l u es of these cou nters defau l t to zero for each U S E
b l ock . T h e value of t he location counter (* L) i s not saved, but set eq u a l t o the va lue
of the or ig in cou nter. I f a LOC had been i n effect prev ious ly, resett ing of the loca­
t ion cou nter to produ ce the desired resu l ts is the respons ib i l i ty of the programmer.

USE a l l ows the programmer to specify consecutive p ieces of code i n d i scontiguous
source segments. It i s more conven ient than using ORC .

Example:

U S E
BTA BL :

USE

NXLAB: L OX
U S E
DW
U S E
STX

U S E
DW
U S E
E N D

VARIABLE FIELD DEFINITION

BTA B L

*

Someth ing
BTA B L
NXLAB
*
Addr

BTA B L
0
*

;(at beg inn ing of program)
;def ine base of j u m p vector
;(retu rn to norma l org)

;add address to j u m p vector

; more

;(at end of program)
; mark end of vector

LA B E L: V F D < Fexp > \ < exp > , . . . , < Fexp > \ < exp >

where: 1 < = < Fexp > < = 1 6
< exp > = any numer ic express ion

VFD defi nes var iable f ie lds . E ac h < Fexp > denotes a f ie ld width. E ach < exp >
denotes an express ion to be p l aced i nto that f ie ld; < exp > val ues that exceed the i r
assoc iate < Fexp > f ie ld width va l u es are tru n cated to match the < Fexp > va lue.

N egative v a lues are eva luated w ith uns igned twos-comp lement ar ithmetic . For ex­
ample , -32768 is 32768 and -1 w i l l be represented by 65535 . The resu ltant val ues are
tru n cated to match the < Fexp > f ie ld width.

V F D man ipu l ates the pos it ion cou nter (* Pl to keep track of the bits rema i n i ng i n a
byte at the end of a VFD pseudo-op. I f the next pseudo-op encountered is another
VFD, the next f ie ld generated w i l l beg in with the u nused b its left in the cu rrent
byte. If the next code-generat ing pseudo-op is not V F D, the assem bler w i l l pad out
the u nu sed byte f ie ld with zeros.

V F D a l l ows you to specify arb itrar i ly complex data f ie lds without regard to byte or
word boundar ies.

Example:

MVI N ST : VFD 2 \01 ,3\D DD,3\SSS

VFD can be used th is way i ns ide MACRO-E N DM constru cts to assem ble code for
unusual processors, spec ia l peri pheral ch ips, and so forth.

Example:

SPEC : V F D
V F D

7\ @43,9 \ 1 '&&'
1 3\$429

S P E C is a l abel point to a 29-b it f ie ld def i n it ion . The f i rst 7 b its conta i n the va l ue 43
octa l . The next 9 b its conta in the tru n cated str ing &&. The next 1 3 b its conta i n the
va l u e 429 hexadec ima l . The * P cou nter cu rrently poi nts i nto the fourth byte after
SPEC , with 3 bits left in the cu rrent byte .

Pseudo-Operations 39

7

PSEUDO-OP QUICK REFERENCE

ig lab ASS E RT < exp >
LA B E L: D B < exp > , < exp >
LA B E L : D B 'ABC D E ' , 'f ' ,$00
LA B E L: DC 'ABCDE'
LA B E L: OS < exp >
LA B E L: ow < exp > , < exp >
LA B E L: ow 'Xu' ,1 2 34,'y'
LA B E L : E C H O < ex p >
ig lab E J ECT
ig lab E LS E
LA B E L : E N D [exp]
ig lab E N D I F
ig lab E N DM
ig lab E PROC
LA B E L : E Q U < exp >
ig lab E RR
ig lab I F < exp >
LA B E L : INCLUDE < f i lespec >
ig lab L I N K < f i lespec >

ig lab L I ST < opt >
ig lab L I ST *

LA B E L : LOC < exp >
N AM E : MACRO < parms >
LA B E L : ORG < exp >
LA B E L : PROC
LA B E L : R EAL6 < exp >
LA B E L : S E T < exp >
ig lab SPACE < exp1 > , < exp2 >

ig lab SU BTTL 'text'
ig lab T I T L E 'text'
ig lab USE < name >
LA B E L : V F D < exp > < exp > , . .
LA B E L : < exp >

< exp > = req u i red express ion
[exp] = optional express ion
'text' = str ings

;Check assembly condit ion
; Def ine bytes
; Define long str ings
; D B with 80h added onto the last byte
; Def ine space
; Def ine words
; Def ine 1- o r 2-character str ings
;Dupl icate code < exp > t imes
; Page eject
;Part of condit ional assembly
; E nd of assembly
;Termi nate range of I F
;Termi nate MACRO o r E C H O
;Termi nates l oca l symbol range
; Def ine LABE L equ a l s < exp >
; Force error f l ag
; Begin condit ional assem bly
; I n c l ude another sou rce f i l e
; I nc l ude another sou rce f i l e
a t the e n d o f th is sou rce f i l e

; < opt > = I i s t control option
; Pop I ist control stack
;Set l ocation cou nter
; Begin macro def in it ion
; Set or ig in cou nter
; Begin loca l symbol range
;6-byte real constant conversion
; Reset LA B E L to < exp >
;Space < exp1 > l i nes if < exp2 > l i nes
left on th is page

; Set l ist ing subt it le
; Set l ist ing t it le
; Use b lock dec laration
;Var iable f ie ld def i n it ion
;Synonym for E Q U

< f i l espec > = < device > : < f i lename > . < extens ion >
ig lab = i gnored l abel

Pseudo-Op Quick Reference 41

8

INSTRUCTION MNEMONICS

T he i nstru ction m nemonics prov ided by the Macro Assem bler are ident ica l to the
standard m nemonics def ined by MOS Technol ogy, with these except ions :

• Quotation marks denot ing character str i ngs must be proper ly paired . (Some
6502 assem blers a l l ow an u nterm i nated quote for a 1 -c haracter str ing.)

• In th is assem bler, the sym bols < and > are b i nary operators (l ess than and
greater than). Some 6502 assemblers def ine these sym bols as u nary operators
(h igh and l ow). See Section 4 for operator def i n it ions.

Examples:

AMAC

CMP
L OX
L OY

Notation

dd

m m m m
n n
rel

z z

HEX

#'?'
#high EXP
low EXP

MOS

CMP
LOX
LOY

B-bit. s igned d isp lacement:
-1 2B < = dd < = + 1 27
1 6-bit address express ion

#' ?
> E X P
< EXP

B-b it constant: 0< = nn < = 255
1 6-bit add ress with in :
*-1 26 < = re l < = * + 1 29
Page 0 location: 0 < = zz < = 255

OP CODE ADDRESS

DATA MOV E M E NT

AA
AB
BA
BA
9A
9B

A9
A2
AO

Regi ster to regi ster transfer.
TAX
TAY
TSX
TXA
TXS
TYA

Load constant i nto register.
L OA #nn
L OX #nn
L OY #nn

REMARKS

;Transfer A to X
; Transfer A to Y
; T ransfer S to X
;Transfer X to A
;Transfer X to S
;Transfer Y to A

Instruction Mnemonics 43

Load regi ster from memory.
AS LOA zz
BS L OA zz,X
A1 LOA (zz,X)
B1 L OA (zz),Y
AD LOA mmmm
B O LOA mmmm,X
B9 LOA mmmm,Y
A6 LOX zz
B6 L OX zz,Y
AE L OX mmmm
B E LOX mmmm,Y
A4 L OY zz
B4 LOY zz ,X
AC LOY mmmm
BC L OY mm mm,X

Store register i nto memory.
BS STA zz
9S STA zz,X
B1 STA (zz,X)
91 STA (zz),Y
B D STA m m m m
90 STA mmmm,X
99 STA mm mm,Y
B6 STX zz
96 STX zz ,Y
B E STX mmmm
B4 STY zz
94 STY zz,X
BC STY mmmm

Stack load/stores.
4B PHA ; Push acc u m u l ator
OB P H P ;Push processor status
6B PLA ; Pop accu m u l ator
2B PLP ; Pop processor status

DYA D I C A R I T H M E T I C

A d d operand a n d carry.
69 ADC #nn
6S ADC zz
7S ADC zz ,X
61 ADC (zz,X)
71 ADC (zz),Y
60 ADC m m m m
7 0 ADC m m m m,X
79 ADC mm mm,Y

44 Instruction Mnemonics

E9
ES
FS
E1
F1
E D
F D
F9

C9
c s
D S
C1
D1
C D
D D
D9

EO
E 4
E C
co
C4
cc

Subtract operand and borrow.
SBC #nn
S BC zz
S BC zz,X
SBC (zz,X)
S BC (zz),Y
S BC mmmm
S BC mmmm,X
SBC mmmm,Y

Com pare B-bit operand with acc u m u l ator.
Set f lags as if subtracting, but do not a l ter acc u m u l ator.
CMP #nn
CMP zz
CMP zz,X
CMP (zz ,X)
CMP (zz),Y
CMP mmmm
CMP mmmm,X
CMP mmmm,Y

Com pare B-bit operand with i ndex register.
CPX #nn
C PX zz
C PX mmmm
CPY #nn
CPY zz
CPY mmmm

MONAD I C A R I T H M E T I C

Decrement b y 1 .
C6 D E C z z
D 6 D E C zz,X
C E D E C mmmm
DE D E C mmmm,X
CA DEX
BB D E Y

I nc rement b y 1 .
E 6 I NC zz
F6 I NC zz,X
E E I NC mmmm
FE I NC mmmm,X
E B I NX
CB I NY

Arithmetic contro l .
1 B CLC ;C lear carry f l ag
DB CLD ;C lear dec i ma l mode
BB CLY ; Set overf l ow f lag
3B SEC ; Set carry f lag
F8 S E D ; Set dec imal mode

Instruction Mnemonics 45

46 Instruction Mnemonics

DYA D I C LOG I CA L/ BOOL E A N O P E RAT I O N S

29
2 5
3 5
2 1
31
2 D
3 D
39

09
05
1 5
01
1 1
OD
1 D
1 9

49
45
55
41
51
4 D
S D
59

2 4
2C

8-b it logical produ ct, conjunction.
AN D #nn
A N D z z
AN D zz,X
A N D (zz,X)
AN D (zz),Y
A N D mm m m
AN D mmmm,X
A N D mmmm,Y

Log ical sum, d i sj u n ct ion, i n c l usive OR.
ORA #nn
O RA zz
ORA zz ,X
O RA (zz,X)
O RA (zz),Y
ORA mmmm
O RA mmmm,X
ORA mmmm, Y

Logica l d i fference, inequ ivalence, exc l u s ive OR .
E OR #nn
E O R zz
EOR zz ,X
EOR (zz,X)
E O R (zz),Y
E O R mm m m
E O R m m m m,X
EOR mmmm,Y

Logical com pare.
Set f l ags as fo l lows:
Z = 1 i f A A N D mem = 0
Z = O if A A N D mem = 1
S = bit 7 of mem
V = bit 6 of mem
(mem mmmm or zz).

B I T
B I T

z z
m m m m

ROTATE A N D S H I FT

OA
06
1 6
O E
1 E

Arithmetic sh ift left.
ASL A

ASL zz
ASL zz,X
ASL mm mm

ASL mmmm,X

Log ical s h ift r ight.
4A LSR
46 LSR
56 LSR
4 E LSR
SE LSR

Rotate left.
2A ROL
26 ROL
36 ROL
2 E ROL
3 E ROL

Rotate right.
6A ROR
66 ROR
76 ROR
6 E ROR
7E ROR

J UM PS
90 BCC
BO BCS
FO B E Q
30 BMI
DO BN E
1 0 BPL
50 BVC
70 BVS
4C J M P
6C J M P

CALL SU BROUT I N E
00 BRK

20 J S R

A
zz
zz,X
mmmm
mmmm,X

A
zz
zz ,X
mmmm
mmmm,X

A
zz
zz ,X
mmmm
mmmm,X

m m m m
(m m mm)

mmmm

RETURN FROM SU BROUT I N E
40 RTI

60 RTS

M I SC E LLANEOUS CPU CONTROL
58 C L I
E A NOP
78 SE I

; I f carry c l ear
; I f carry set
; I f eq ua l (= O)
; I f m inus
; I f not eq ua l (< > 0)
; I f p lus
; I f overf low c lear
; I f overf low set

; Software i nterru pt
; J u m p su brout ine

; Retu rn f rom i nterrupt
;Return f rom subrouti ne

;Clear interrupt mask (E I)

; Set interrupt mask (D I)

Instruction Mnemonics 47

9

USING TH E ATARI MACRO ASS E M BL E R
WITH TH E ATARI ASSE M BL E R E DITO R

SOURCE FIL ES

I f you have a source program that has been developed us ing the AT A R I Assembler
E d i tor cartr idge, and you want to use the Macro Assembler to assem ble i t , you w i l l
have t o b e aware o f the fo l lowing d ifferences:

• The Macro Assembler does not accept l i ne n u m bers.

• The = for E Q U must be em bedded between at l east two b lanks .

• Comments m ust be preceded by a sem icolon .

• The fo l l owing pseudo-ops are recogn ized by the Macro Assem bler:

. BYTE is equ ivalent to D B
. E N D is equ ivalent t o E N D
. PAC E i s eq u ivalent to T I TL E
. SK I P is eq u ivalent to S PACE
.WO R D is equ ivalent to DW

• T he fo l l owing are not recognized by the Macro Assem bler:

BYTE
WORD

• The Macro Assembler does not recogn ize * = for sett ing the or ig in counter;
use ORC instead .

• Al l strings must be bracketed by quotat ion marks (") for the Macro
Assembler to interpret them properly.

Using the AT A R I Macro Assembler with the A TAR I Assembler Editor Source Files 49

1 0

ER RO R CODES

E rrors a re f lagged by a s ing le- letter code i n co lumn one of the output l ist i ng. L i nes
conta i n i ng errors are a lways wri tten to the screen, regard less of the output selec­
t ion .

A Add ress error. I nstruct ion spec if ied does not su pport the address ing mode
specif ied.

D Dup l icate label error. The last one def ined is used.

E E xpress ion error. An express ion on the sou rce l i ne i n the add ress f ie ld is
u n recogn izable.

F Bad nest i ng of control statements. Bad nesti ng of I F . . . E LS E . . . E N D I F
statements. When this occu rs o n the E N D l i ne, i t means a n I F was not ter­
m i nated.

I nstru ction f ie ld not recogn ized. Three NOP bytes are generated .

L Label f ie ld not recogn ized. T hree NOP bytes are generated.

M MACRO statement error. I m proper macro def i n i t ion .

N E rror in n u m ber: d ig it exceeds rad ix; va lue exceeds 1 6 b its, and so forth.

0 Stack table overf l ow occu rred i n eva luat ing expression; user should
s i m p l ify express ion. Too many L I N K f i l es . Too many PROCs. Too many
U S E b locks.

P Programmer-fo rced error. See ASS E RT and E RR pseudo-ops.

R E xpress ion i n var iable f ie ld not computable.

S Syntax error i n statement. Too many or too few address subf ie lds .

U Reference to an u ndefined sym bo l .

V E xpress ion overf low: resu l tant va lue is tru n cated.

W N ot with i n V F D f ie ld width (1 < = width < = 1 6).

Y Misp laced instruct ion: extraneous E N DM . When th is occurs on the E N D
l ine, i t means a MACRO o r E C H O was not term inated . Make s u re that
E N OM is preceded by a tab (..,..) c haracter.

Error Codes 51

LIMITED 90-DAY WARRANTY
ON ATARI® HOME COMPUTE R PRODUCTS

ATARI, INC ("ATARI") warrants to the original consumer purchaser that this ATARI Home Computer Product (not i nc luding computer pro­
grams) shall be free from any defects in material or workmanshi p for a period of 90 days from the date of purchase. If any such defect is
d iscovered within the warranty period, ATARl 's sole obligation wi l l be to repa i r or replace, at its election, the Computer Product free of
charge on receipt of the unit (charges prepaid, if mai led or shipped) with proof of date of purchase satisfactory to ATARI at any authorized
ATARI Computer Service Center. For the location of an authorized ATARI Computer Service Center nearest you,

call toll-free: In California (800) 672-1 430
Continental U . S . (800) 538-8737

or write to: Atari, I nc.
Customer Service/Field Su pport
1 340 Bordeaux Drive
S u n nyvale, CA 94086

YOU MUST RETURN DEFECTIVE COMPUTER PRODUCTS TO AN AUTHORIZED ATARI COMPUTER S E RVICE CENTER FOR IN­
WARRANTY REPA I R.

This warranty shal l not apply if the Computer Product: (i) has been misused or shows signs of excessive wear, (i i) has been damaged by be­
i ng used with any products not supplied by ATARI, or (i i i) has been damaged by being serviced or modified by anyone other than an
authorized ATARI Computer Service Center.

ANY APPLICABLE IMPLIED WARRANTIES, INCLU D I NG WARRANTI ES OF M E RCHANTABIL ITY A N D FITNESS FOR A PARTICU LAR PU R­
POSE, ARE H EREBY LIMITED TO N I N ETY DAYS FROM THE DATE OF PU RCHASE. CONSEQU ENTIAL OR I NCIDENTAL DAMAG ES
RESULTING FROM A BREACH OF ANY APPLICABLE EXPRESS OR IMPLIED WARRANTIES ARE H E REBY EXCLUDED. Some states do not
a l low l i mitations on how long an impl ied warranty lasts or do not a l low the exclusion or l i mitation of i ncidental or consequential damages,
so the above l i mitations or exclusions may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

DISCLAIME R OR WARRANTY
ON ATARI COMPUTER PROGRAMS

All ATARI computer programs are distri buted on an "as is" basis without warranty of any kind. The entire risk as to the qual ity and perfor­
mance of such programs is with the purchaser. Should the programs prove defective following their purchase, the purchaser and not the
manufacturer, distributor, or retai ler assumes the entire cost of a l l necessary servicing or repair .

ATARI shal l have no liabi l ity or responsi bi l ity to a purchaser, customer, or any other person or entity with respect to any l iabil ity, loss, or
damage caused d i rectly or indirectly by computer programs sold by ATA R I . This disclaimer i nc ludes but i s not l i mited to any i nterruption of
service, loss of busi ness or antici patory profits, or consequential damages result ing from the use or operation of such computer programs.

RE PAIR SERVICE

If your ATARI Home Computer Product requi res repair other than under warranty, please contact your local authorized ATARI Computer
Service Center for repa i r i nformation.

IMPORTANT: If you ship your ATARI Home Computer Product, package it securely and ship it, charges prepaid and i ns u red, by parcel post
or United Parcel Service.

