a reference manwal for

B UG/ 6 5

an Assebly Languége Debugging program for
use with 6582-based computers built by

Apple Computer, Inc., and Atari, Inc.

The programs, disks, and manuals comprising
BUG/65 are Copyright (c) 1982 by
McStuff Company
and
Optimized Systems Software, Inc.

This manual 1s Copyright (c) 1982 by
Optimized Systems Software, Inc., of
10379 Lansdale Avenue, Cupertino, CA

All ri1ghts reserved. Reproduction or translation of

any part of this work beyond that permitted by sections

197 and 108 of the United States Copyright Act wilthout
the permission of the copyright owner is unlawful.

- ou T W i - -

e AN e .

vomly -l + sl o e -t

PREFACE

BUG/65 is an interactive debugging tool for use in
the develovment of assembly language programs for the ATARI
808 or ATARI 400 personal computers. It‘'s designed to take
as much of the drudgery out of assembly "~ language debugging
as possible. The design philosophy behind BUG/65 is that
the computer should serve as a tool in the debugging process
as opposed to a hindrance. One result of this philosophy 1is
that BUG/65 requires a relatively large amount of memory
when compared to simpler debug monitors. This 1s the result
of a tradeoff between memory and functionality, with

function winning out. ,

BUG/65 is a RAM loaded machine langquage program
occupying 8K of memory; it is self relocatable as shipped
and requires a full 48K bytes of memory. BUG/65 is also
designed to be floppy disk bhased - it isn'‘t intended to be
used in cassctte-only systems. BUG/65 was designed for use
by an experienced assembly lanquage programmer.

BUG/65 1is an original product of the McStuff
Company, which developed the product under the name "McBUG®",
which name is their trademark.

-—----—_-----_—--—---_------—-------—---------------------—--

For use on the ATARI 800 or 400 computer with a
minimum of 48K of RAM and one floppy disk drive.

TRADEMARKS

The following trademarked names are used in various
places within this manual, and credit is hereby glven:

0S/A+, BUG/65, MAC/65, and C/b65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apple 1I, and Apple Computer(s) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, Atari 409, Atari 800, Atari Home Computers, and
Atari 853 Interface Module are trademarks oOf
Atari, Inc., Sunnyvale, CA.

1
ﬁ
j
i1
é
i

-—'."‘b

\

SUMMARY OF MAJOR FEATURES OF BUG/6S

-----—_----—-----—------—--------ﬂ--

A full set of debugging commands - change memory,
display memory, goto user program with break

points, etc.

Binary file read and write, including appended
write.

A disassembler.

An instant assembler providing labeling cdpability.

Expanded command addressing capability: hex or
decimal addresses, + and - operators
supported, relocated addresses supported.

v

Read or write disk sector(s).

Multiple commands permitted in a command line.
Ccommand lines can be repeated with a single
keystroke or repeated forever with the

special slash operator.

Support for relocatable assemblers - the base of a
module can be specified and then used to
reference addresses in that module.

BUG/65 commands can be executed from a command file,
and there 1is a command to create command

files.

Hex to decimal and dJdecimal to hex conversions
provided.

Memory protection of BUG/65's code and data. BUG/65
won't allow you to use a BUG/65 command that
will destroy any part of BUG/65 1itself. For
example, you can't use the Fill command to
overwrite BUG/65's code.

Page zero sharing. BUG/65 shares page zero with a
user programn by keeping two copies of the
shared page ze¢ro locations - one for the user
and one for BUG/65 itself.

-] -

\
‘.’.: .

d) - - v e .
’ .:’ i.; " ; J‘ L T - ‘.'" AR
i » “B? " ', w4 Sy

This section is intended to be a handy reference
guide and will probably prove indispensable after the user
has thoroughly read through the rest Of this manual. For
the experienced debug user, might we sugjest at least a
quick perusal of Sections 2 through 6 and Sections 8 and 9.

The following table is simply a syntax summary of
the available commands. Excepting for the first three
commands (which are Jdescribed 1in Section 8), all the
commands are described in alphabetical order in Section 7.

COMMAND
CODE SYNTAX PURPOSLE

{RETURN} Repeat last commani line

/ “hen appenled to a command
line: repeat line forever.

» Display last command line

A A <addr>p Ascii mode memory change

B B <addr»> Base address for relocation

C C <startaddrl> <endadidrl> <startaddr2>
Compare memory blocks

D D <startaddr> [<endaddr>] Display manmory

E E $filespec Execute a command f1ile

F F <startaddr> <entaddr> {<value>]
Fill memory block with value

G G [<startaddr>) [@<breaipoint> [Rn=<value>] [I=<count>]]
Go at ad.ldress, set opntional
hreakpolnt, with optional Register
value breakpoint and pass Counter.

H H <numberl> <number2> Hexadecimal arithmetic result

1 I disk Inventory (directory listing)

J J sfilespec,string create command file

K K <number?> | convert hex to2 decimal

_—— -

t
!

M

Wi

Y

™~

L <startaddr> <endaddr> <bytel> [<byteN> ...]
Locate byte string in memory block

M <startaddr> <endaddr»> <toaddr»
Move memory Dblock

p [s]) (pP] Print output on Screen and/or
Printer -
Q Quit...go to OS/A+

R [<offset>] #filespec Read a binary file to memory
with optional offset

RY [<sectornumber> [<bufferaddr> [<numsectors»>]]]
Read sector(s) from disk to
memory buffer

S <addr>) Substitute memory, numeric mode

T [s] [<count>] Trace, with optional Skip over
subroutine calls, for (optional)
count intstructions.

U <addr> [<param>] call User routine at given
address and pass optional

parameter in X,Y registers

\V View user registers

W [:A) ¢<startaddr> <endaddr> tfilespec
write a block of memory to a
binary image file, optionally
appending instead of creating
new flle.

WY [<sectornumber> [<bufferaddr> [<numsectors>]]]

Write sectors from memory
buffer to disk

XA or XX or XY or XS or XP or XF
change user regilister value

Y ¢<startaddr> { cendaddr>]
dissasemble memory block

Z <addr>)p instant assembler (at address)

@ a-ra copg el - SlEncgieges - § -
- L]
.-

o -

s & resw -~ - B

s S g " *

Cone?

£...1

filespec

SECTION 2: Notations Used In This Manual

The following notations are used in this manual:

Is used to indicate a numerical address parameter.

The address expression Dbetween the two
characters "<" and "»>" may be any valid
address as described in Section 3. For

example, <START> means that you can enter any
valid address expression to specify the START
parameter.

Is used to indicate one and only one blank. In
most cases, blanks are insignificant and any
number of them may be entered between

commands and parameters. However, in certain
cases, one and only one blank must be entered
- this blank is indicated by the “p
character.

1s used to specify an optional parameter. For
example, [<VALUE>) would indicate that VALUE
is an optional address parameter. You'll find
that many parameters are optional, and in
such cases logical default values will Dbe
supplied by BUG/65.

1s used to delimit a list of choices. [In such a
list, one and only one choice may be used.

For example, "+ or -" inlicates that you may
enter a plus sign or a minus sign, but not
both.

Is wused to indicate a standard OS/A+ filespec.
This consists of the device name followed by
a colon and the filename. For example,
“D:DATAFILE" is a valid filespec for a file
named DATAFILE on disk drive one.

iy

SECTION 3: Address Parameters .

) ?UG/GS allows numerical addresses to be specffled
in a variety of ways. You can use hexadecimal or decimal
notation, add and subtract terms, or add a relocation factor
to any address. The following Backus-Naur definitions
describe the various address types:

<ADDR> 1= + or - <TERM> [+ or - <ADDR>]

<TERM> 1= <NUMBER> or X<NUMBER>b

<NUMBER> := <DECNUM> or <HEXNUM>

<DECNUM> := .<DECIMAL DIGITS>

<HEXNUM>

<HEXADECIMAL DIGITS»>

In the above the only item not literally defi

) Lo I) . he efined
is Fhe X" item in the definition of a TERM. This 1§ used t;
Lnd}cate that the following NUMBER is to be relocated by
adding the value of the current relocation base to the value

of MNUMBER. The current relocati “p"
Of i ation base is set by the B

All address parameters are inter

o : u preted as 16-bit
positive numbers in the range of J to 65535. Overflow isn't
detected or reported as an error.

Some exuamples will help (all
address expressions): o of thess are valid

1FAl a hexadecimal number.

.100 a decimal number (one hundred).

1800+. 20 a hexadecimal number plus a decimal
number. This evaluates to 1014 hex

(4116 decimal).

142-3+4 a long expression. Evaluates to 4.

X1234 a relocated address. If the current
relocation base has the. value

$1000, then this expression will
evaluate to §$2234.

-—5--

3.1 Spaces as Parameter Delimiters

BUG/65 uses spaces as paraneter Jdelimiters. This
makes for casier and quicker entry of commands. However, it
does introduce some conventions regarding the use of spaces
that you must be aware of:

* Spaces may not be embedded in a number. For example,
*12 34" is interpreted as two parameters ($12
and $34) and not as the single parameter
$1234.

. Spaces aren't allowed between the "X" relocation
specifier and it's associated relocated
address. For example, "X 1234" is interpreted
as two parameters. The first will have the
value of the current relocation base and the
second is S1234.

. Any number of spaces imay be used to separate two
paramaters. For example, "1234 5678" 1is
a perfectly wvalid way of entering the two
parameters $1234 and $5678.

-

SECTION 4: Loading and Running BUG/65

- e = e = > = - - - - -

8UG/65 is shipped on your master diskette as a
relocatable COMmand file, named "BUG65.COM". Therefore,
BUG/65 functions just as does any OS/A+ extrinsic command:
simply type “BUG65" when OS/A+ prompts with Dl: (or Dn: if
you have changed default drives...see the 08/A+ manual . for
more details) and BUG/65 will load into memory and relocate
itself to just above the current value of LOMEM (contents of
$2E7-92£E8). ‘
4.1 Specifying BUG/65's Load Address -

I1f you need BUG/65 to load at some location other
than LOMEM (which is typically around §2000 with OS/A+
version 2 and around $2C00 with version 4), you may also
enter a load address on the OS/A+ command line. The address
must be 1in hex, must be at or below $9A03, and should be
above LOMEM, Remember, BUG/65 occupies B8K bytes, which
means it will occupy memory starting at the address you give
and ending $2000 bytes higher. .

EXAMPLE: -
fD1:]BUG6S 8000 2
This usage will load BUG/65 at $8200, set itse
restart point at $8200, and occupy memory from
$BUUYY through $9FFF.
)

K}

. J

LY

. X
P]

K

*
.
;r - v*is;l.l‘ Y

-
,“""\‘r'b! ‘-.-} ‘.

ta.

+
TN

b =

k. ._

b

¢

gh

[

b

r
-

gl Segipeiiingy

L N

A

M ¥

"'.
3

N

%

¥

-
A

. . 4

b .

4
t

X

%

Tyl

*
]
-
’
-
)
L
-
L
[

4

i
2
4

»

>
[, Lad

" S

fl!

| 4

Il e e 7

- s .

»

3T ¥ i

*,0

>
- - . xS dpafin ol e -

. g

L — - . =

4.2 Creating a Non-Relocatable Version

- --—-----------
oy dEp THG WER AR VR o - e
--—--—--------

In order to allow itself to be relocated virtually

anywhere in memory, BUG/65 as shipped includes a relocation
bit map and a relocation program. In addition, relocatable
BUG/65 always loads in at locations $9800 through $BCOQ. If

these addresses are “poison™ to you (e.g., 1f you want to

use BUG/65 with a cartridge plugged in?. you may wish to
produce a non-relocatable version designed to run within an

address range you pick.

If so, USING A K SYSTEM, simply .specify thg
loadpoint, as shown 1in the preceding section (e.g, vla
“BUG65 7000*) and allow BUG/65 to load and relocate. Then

exit to OS/A+ (via Quit) and use the OS/A+ intrinsic command
SAVE to save a non-relocatable version. The address range

to be SAVEd may be calculated as follows:

SAVE filename.COM loadpoint+3200 loadpoint+$20A0

Thus, if you had specfied "BUG65 7000", you could save the
non-relocatable version via

SAVE BUG70J0.COM 720J 9000

thus also giving it a name which will later remind you where
it will load at. To execute this non-relocatable version,

simply type in its name (BUGJ0U9Y in the example shown).

SLCTION 5: Command Entry

---‘---'------'-----------

When you sce BUG/65's input prompt (the “»>*
chafactey) in the left-hand column of the sCreen, then
you re 1n command entry mode. Any data typed at that point
will be entered into the command line buffer - the command
line isn't executed until You type RETURN. You can enter as
many commands 1n one command line as will fit in the command
line buffer (100 characters). As soon-as you tyne the
RETURN, ynu'll leave command entry mode and BUG/BB will
begin executing the command(s) in the command line.

YOu can tell the difference between command entry
mode and command execution mode. In command entry mode, the
’

cursor 1s 1lisplayed. When a command 1s executing, the cursor
ls blanked,

[f you try to enter more than 188 characters in
the command line, BUG/6S will beep the bell and not allow
any more characters to be input. At that point, you may
“l1ther hit RETURHN to execute what's in the command line 3o

far, or edit some characters out of the command line with
the BACKSPACE key.

5.1 Command Line Editing

---——---------------------

when entering commands, you may edit mistakes with
the BACKSPACE key. The HBACKSPACE will move the cursor one
column to the left and delcete whatever character was in that
column. Unfortunately, the normal system editing facilities

argn't supported. This 1s because of the manner in which
BUC/65 does keyboarl input.

A Lo b 4 -.‘-l&:u.-r.‘ P

ol o,

~ s el . hw

- s e g Ry .

L W)

LA W eml, ™

nUG/65 has two types of commands - normal and

immediate. Normal commands are those that ion't rquire
interaction with the operator for their execution. Immedlate

commands do require operator interaction. Normally, you'll
never be aware of the distinction between the two types -
command entry “flows" without any consideration of the

command type required. The only difference is that Aan
imnediate command must be the first command entered 1n a
commnand line. Once an immediate command is entered, BUG/65
will Dbegin interacting with the operator for further Linput.
Since this interaction is required for completion of the
command, it doesn't make sense to allow immediate commands
to be “stacked” in the middle of a command line for
axecution between other commands. If you try to enter an
immediate command in the midile of a command line, you'll
get an “IMMEDIAYTE ERROR"™ error message and find yourselt

back in the command entry modc.

The immediate commands are the "A" comman:d (ASCIT

memory change), the "3" command (hex memory change), the "X"

command (ctiange user ceyisters), and the "2" command
(instuant assembler).

5.3 Command Execution

°or a normal type command, BUG/6S will begin
command execution as soon as you type KETURN. For limmediate
type commands, 0BUG/65 will begin command execution as soon
as you type the command character (provided that chariacter
is the first character in the command line).

-1~~~

5.4 Multiple Cormands on a Line

--——---—--.-—-——--------—----------

Multiple commands may be entered on the same
cgmmand line. Normully, successive commands in the command
line don't require command separators between them other
than at least one space character. The exceptions to this
are commands for which an optional parameter 1is being
defaulted. For example, the display memory command (“D") may
have an optional parameter specified as the end of the area
of memory to be displayed. If that ending parameter 1isn't
specified, BUG/65 will default the end to the start plus
eight bytes. I[If you wanted to enter two succesgive display
commands 1in the command line without defaulting the end
parameters, you could type |

D 1008 1918 D 2000 2010

and no command separators would be required because BUG/65
Fnows that the "D" command only has two parameters and will
interpy et further characters 1n the command line as the
beginning of a new command. However, if you wanted to
default the e¢nding address of the first Jdisplay command,
then you'd have to insert a command separator so that BUG/6S
kpows that the first display command is finished. 1If you
didn't do this, then the second display command "D" would be

interprete.l as the sccond parameter of the first display
command (the end address would be interpreted as $¢D. The
command - separator 1s a comma, 80 in this case you would

enter the commands as follows:

o 104, D 2009 2010

S .

SECTION G: Command Termination

T e Ol D o D W) ol O bk ul W W wr e W wE R e T A T A W A o o S e

This section describes the many ways that A
conmand will stop.

6.1 Normal Termination

ance a command line 1is given to BUG/oH for
execution, BUJIG/65 will execute all of the commands tn the
line to conclusion before returning to command entry mode.

[t's possible to instruct BUG/65 to execute a command line
™ " ~

foruver" (see Section 8.2), 1n which case RUG/05 will never
come back to command entry mode until you manually i1ntagrvenao

(with IISC or BRTCAK - see Section 6.1)
6.2 LError Toermination
1t Al eCTOr OCccurs 1n Comme ned execution, BUG/0S

will Dbecep the bell and display o short ervor message in
English 1ndicating the cause of the crroc. Command execuation
wilill scop and you'll enter the command entry mode. Ay
commands 1n the command line after the command which causeld
the error won't be excecuted, (You should also be awar: that
BUG/65 will close any file that has been opened using [OCIH
number one when any error occurs.) (A complete list of
error messages 1s 1in Section 14.)

6.3 Command Suspension

Once BUG/65 begins exccuating a command line, you
may temporarily suspend command execation by hitting the
space bar. This will put BUG/695 1tn a "hold” condicion, At

which point you have two alternatives: you ¢can restart the
command by hitting the space bar again, or you can abort the
command with ESGC or URIIAK.

6.4 Comunand Abort

wp e Gd e gub W)) e ol iy o el Gl G Wb B UEE an aED

You can Abort any command that 1s executing
(excaeprt for the read and write disk commands) by hitting the
ESC ocr BREAK keys. BUG/65% will stop executing the command
and you'll enter command entry mode.

-=]2--

6.5 The RESET Key

BUG/65 traps the RESET key so that hitting RESET

will bring you back to BUG/65. RESET will stop any command

that is executing. You'll see the BUG/65 version and

copyright prompt, and you'll be in command entry mode. RESET
will reset all of BUG/65's internal stuff except for any

user defined or modified parameters. For example, the
user's registers, the current relocation base, etcC., aren't
cleared on a RESET - they'll retain whatever values they had
before the RESET. (A1l of this depends, however, on the
fact that the reset vectors haven't been modified Dby the
user - e¢ither by wusing a BUG/65 command or by a user
program. If you've modified the reset vectors, then the
action of the RESET key is your responsibility.)

6.6 Manual Restart

Since BUG/65 is relocatable, the manual restart
point (coldstart) depends upon where 1t has been relocated
to. If you specified an address to load BUG/65 when you
gave the OS/A+ command line (e.g., BUG65 4800), then the
coldstart point is $200 greater than the address speciflied,
and you may use 'RUN address' from OS/A+ if desired (e.g,
RUN 4200 if the original command was BUG6S 4000). In any
case, you may inspect location $008C (via the BUG/65 command
'D C') to determine the coldstart point. The 6502 word
address in locations $8C and $68D (LSB, MSB order) points to
BUG/65's restart point. The result of a manual restart is
the same as if the default RESET key processing occurred
(see section 6.5).

S T Y

. - .

T NPT PR TR v v ¥ pavrry:
Py e

LT N

{
,?

[
L)

.l “J * .¢. .i.. v
% i

l‘ - I)
“‘

""’v." \‘

.l i.\ .‘1' '

]

LI
“~'| l‘ .- r' +

.“ l’.

v e n. slheld

i

."'

B A
...'v

h"-&M‘ . .-‘4
. ‘. - ‘..‘l.‘ e
...‘.‘ .' ‘

. 2

L __J
o e

3
L
i "" ‘. 'l‘
“a»t

e,

N

]
‘o
'

wad) vo- vPue .“.

- up
) |

!

o s ruly .

A g W .
’ «
, L]
L]
»
L] r '.

A

]
.... . ¢ .

s o

.] X d".. Y

I ¢

et W St v e P aa
I

- . _ .
celam b @ -V g o e B s -

- - - e el

—"--‘f‘,..

R e -? gy .

SECTION 7: Command Descriptions

) WD G R NS D A A e G G A G GER TWE W G A A G W W A S Sl ANl el O AN W G

Throughout the descriptions of the commands,
comments are sometimes presented in the command line
examples. These are denoted by the characters "*/". Anything
appearing on a line after these characters is a comment and
13 NOT part of the command line being exemplified.

The commands are presented in alphabetical order.

S B P

A - Change Memory, ASCII mode

-auh et anp anb dal e A aEEd Sy -, --——-—-----—_-——----

A <ADDR>)P

The A command allows you to replace the contents of

memory bytes beginning at location <ADDR> with ASCII characters.
As soon as you type the required space character after the

address,

BUG/65 will prompt you with the current contents of the

memory location at <ADDR>. Those contents will be displayed as
an ASCII character. At that point, you have the following

options:

l.

will

Typing a SPACE will cause the current memory
location to be skipped and the c¢ontents oOf
the next memory location to be displayed.

Typing an UNDERLINE will cause the current address
to be decremented by one. The new address 1is
then displayed on the next line of the screen
followed by the contents of the new memory

location.

Typing a RETURN will cause the address of the
current memory location to be displayed on
the next line of the screen followed by the

contents of the current location.

Typing ESC will get you out of the command and back
into command entry mode.

Typiﬁb any character other than "€" will cause the
ATASCII value of that character to be entered
into memory at the current address. The
address i3 then incremented by one and the
contents of the new memory location are

displayed.

Typing the character "@" causes the next character
typed to be entered i1into the current memory
location as its pure ATASCII value without
any of its control character significance.
For example, typing "@ ESC" will insert the
ATASCII value for ESC {nto memory. The
address is then 1incremented by one and

operation continues as in 5. above.

After you exercise any option except option 4., BUG/65
again prompt you with the contents of the current location

and you may then choose from any option again.

I

7.2 B - Set Relocation Base

The B command will set the value of the relocation

base to ADDR. The relocation base is intended for use with
relocating assemblers. In a relocatable environment, listings
typically are addressed from location zero. When a module to be

debugged 138 subsejuently loaded into memory, it will have a
relocation offset aidded to the arddresses in the listing. The B
command allows you to set the relocation base to the load
address of the module you're working on and then to reference
addresses within the module by simply prefixing each address
expression with the relocator symbol "X".

For example, suppose that a relocatable module 1s
loaded at location $5380 in memory. Suppose further that we
want to Jdisplay the contents of a memory location which is $230
from the beginning of the module. The following commands would
do the job:

B 5380, D X239

The world 1sn't overrun with relocating assemblers for
the ATARI. However, until it 13, the B command has other useful
applications. These take advantage of the fact that the
relocation base value is a variable which can be modified during
command execution. For example, suppose you know that the
string of characters "ABCD" 1s stored somewhere on a diskette

and you want to find the sector that contains 1t. The following
coinnands will do the trick:

B 1

D X, RY¥ X 4000 1, L 4000 407F 41 42 43 44, B X+1/

-——]16== .

This uses some commands not introduced yet, but this
ig what happens: First, X 1s set to 1l with one command line.
Then a second command line will display memory at the location X
(so you'll know where you're at as you step through), read
sector number X into memory locations S4000-5407F, locate the
string "“ABCD" in that sector buffer, then bump X by one for the
next sector. The slash at the end of the command line means
that the command line will execute forever. What will happen 13
that BUG/65 will continuously read diskette sectors. For every
sector read, you'll see at least a memory display of eight bytes
beginning at address X (which is the sector number) . 1f the
Locate instruction finds the string "ABCD" in the sector buffer,
it will display the location of the string. At that point, Jjust
hit ESC to stop the command, and display the value of X ("D X
RETURN"). The sector containing the string will:reither be the
value of X or one before it, depending on how fast your ESC was.

7.3 C - Compare Memory Blocks

/

C <STARTBLOCK1> <ENDBLOCK1> <STARTBLOCKZ>

Compare is used to compare the contents of two blocks
of memory. The block of memory beginning at STARTBLOCK1 and
ending with ENDBLOCKl1 is compared to the same size block

beginning at STARTBLOCK2. 1If both blocks are the same, then

there will be no output. If any bytes in the blocks differ,
then BUG/65 will display a line of data in the following format
for every byte that is different:

AAAA = BB CCCC = DD

where AAAA = the hex address of the differing location
in the first block, BB = the hex contents of location AAAA, CCCC
= the hex address of the differing location in the second block,
and DD = the hex contents of location CCCC.

--]7--

[- S, - L] »_1

e g = g e

7.4 D - Display Memory

The D command displays the contents of the memory
bLlock beginning at START and ending at END. If END 1isn't
specified, then the default wvalue of START+7 is used. The
memory block is displayed in the following format:

AAAA = BB BB BB BB BB BB BB BB CCCcCCccece

where AAAA = the hex address of the first byte in this
line, BB = the hex contents of successive memory locations
beginning at location AAAA, and C = the ASCII character

interpretation of the positionally corresponding BB value of the
byte,

7.5_ E - Execute a4 Command File

E #$filespec

The E command 1is used to execute a command line from a
command file. The file specified by filespec must consist of a
line of BUG/65 commands and parameters and must be ended with an
ATASCII EOL character (5$9B). BUG/65 will only execute one
commnand line from a command file and then it will stop reading
the file. Command files can be chained however, so that the
lagt command in one file can execute another command file. An E

command should be the last command in a command line because any
commands after the E in the line won't be executed.

7.0 F - P11l a Memory Block with a Value

F <START>» <END> [<«VALUE>)

The F command will £ill the block of memory beginning

with START and ending with END with VALUE. [f VALUE 1isn't
specified, then =zero will be used. Note that VALUE is a byte

value - the least significant byte of the 16-bit VALUE will be
used for the fill.

--18-- '

1.7 G - Goto a User Program

G [<START»>] [@<BRKPOINT> [RN=<VALUE>] [I=<COUNT>]]

The G command will execute a user program beginning at
START. If START isn't specified, then execution begins at the
current value of the wuser's PC register. BRKPOINT 1is an
optional breakpoint. If the user's program trys to execute the
instruction at BRKPOINT, the program will break back to BUG/65
and BUG/65 will display the contents of the user's registers at
that point. Examples:

G 1000 /* go at location $1000, no breakpoint
G 84300 /* go from wherever our PC was and break

/* at location $4300

A breakpoint may be conditionally qualified by a
required value in a specified register. “RN=<VALUE»>" will tell
BUG/65 to break at that point only if the value of user register
"N" equals VALUE. If that condition isn't met, then the user's
program 13 allowed to continue executing at the location of the
breakpoint. (The 1instruction that was at the breakpoint
location WILL be executed.) The mnemonic names of the registers
that may be specified for "N" are: A, X, Y, S, and P, which
stand for the wuser's A, X, Y, Stack, and Status (flags)
registers respectively. (Note that only the least significant
byte of VALUE is used for this qualification.)

Example:

G 10600 @1422 RX=33 /* go from location $1990 and
/* break at location $1422
/* only if register X equals
N /* $33
A Dbreakpoint may also be qualified with an iteration
counter. "I=<COUNT>" tells BUG/65 to allow the execution of the
lnstruction at the breakpoint COUNT times before breaking.

Example:

G 1000 @2300 1=2 /* go from location $1000 and
/* break the second time we hit
/

* the instruction at $2300

~=]19--~

O U ALY I

* * L] L I -
r - r - L] r
Y -.‘-_" 5051:""

3 . -
t, e
rp"

Y | A
PO Sl

K}

‘.‘.fi"x " ..-

The register and iteration qualifications may be used
together. In this case, the register condition must Dbe met
betore the iteration counter {8 decremented. As 1in the
following example:

* go from location 31000
* and break the third time
&

the instruction at loc-
* ation $1234 18 executed
* with register A equal
* to $50

G 1008 @1234 RA=50 =3 ;
/
/
/
/

All of this flexibility 1isn't without 1its price,
however, Because BUG/65 has to do quite a bit of evaluation at
every breakpoint before deciding if the break condition has been
met, Jdon't expect to be able to conditionally pass through
breakpoint instructions at real-time speed. As long as you

ncver execute the instruction at the breakpoint, you're OK, but
as soon as BUG/65 gets the break, expect several hundred

instructions to be executed before your program 1is given back
control after the break 1sn't met.

Also, BUG/65 was NOT designed to allow breakpoints 1in
PROM resident code. If you attempt to set such a break point,
or {f you try to set a breakpoint at a non-existent memory
location, you'll get a "BREAKPOINT ERROR",

One other thing. BUG/6S will automatically remove
breakpoints from your program after a break occurs. Breakpolints
aren't left set after the break 13 performed.

7.8 iH - Hexadecimal Arithmetic

Il <NUMBER] > <HUMHBER2)>

The H command will calculate the sum NUMBER] + NUMBER2
and the difference NUMBER]l - NUMBER2 and display the results on
the next line of the screen as two hex words. The sum 1s the
first word displayed, the difference is the second.

P, Y, Y

The 1 command will display the directory of the
diskette in drive one. The display can be suspended or halted
with the SPACE or ESCAPE keys respectively.

7.10 J - Create a Command File

J #filespec, string

The J command allows you to create command files for
execution by the E command. The string in the command is any
string of valid BUG/65 commands. The string will be written to
the file specified by filespec in the format expected by the E

command. Please note the comma after the filespec - 1it's
required, else DBUG/65 won't know where your filespec stops and
your command string starts. Also note that the J command

doesn't allow multiple commands in the command 1line to be
executed after the J command - everything in the line after the
filespec and up to the RETURN is written to the file instead of

being executed.

7.11 K - Converf Hex to Decimal

o SAy o S G ou I oM GEP UEP Wl YRE WS) AP) b Wh TN W A W WP Y WP AP e e Y e e e e

K <«NUMBER> -

The K command will convert NUMBER to a decimal number
and display the result on the next line of the screen. NUMBER
can be any valid address expression.

To convert decimal to hex, just display memory at the
decimal location of the number you want to convert. The hex
equivalent of the decimal location appears in the display output
a3 the hex word on the beginning of the line. For example, to
convert 1800 decimal to hex, just execute the command "D .100698".
You'll see the hex conversion of 10Y0 as the flirst hex word on
the next line.

-=21--

- P Y - .‘

R I

-y -

v‘t&'ﬂ;‘:* ® - . -
v .7 . .

¥ ",
[. -

. -:‘ LY
[

4#.__‘-:]

“‘mte
. . -t "y

- i o
‘,

hv‘u

.

s 1‘ ‘,|.-l

. . - i.(‘-:- *
“‘-L’m -'.-.
'g . .

S
e r

The L command . will search the block of memory

beginning at START and ending at -END for a hex string. The
hex Btring 15 defined by BYTEl...BYTEn, which are
interpreted as the hex bytes of the pattern string. (Only

the least significant bytes of the address values are used
for each byte in the string.) Wildcard bytes which will
match any byte in memory may be specified by the character
“«* in the string. BUG/65 will output the addresses oOf
every occurrence of the string found in the block. For

examples:

will locate any occur-
rences of the string “ABC”
in the memory block

$1999 to S1UFF '

L 1000 10rF 41 42 43 /
/
/
/

L 130 23049 1 ¢ 20
rences of a three-character

string which begins with
$10 and ends with $23 1n
the memory block $1800

®
N
a
»
* will locate any occur-
|
®
|
=
* to $2000

/
/
/
/
/
/

| 7.13 M - Movae a Memory'Block

4 <«START> <END> <«TO

The M command will move the block of memory
beginning at START and ending at END to TO. BUG/65 will
take care to handle overlapping moves correctly, either for

moves up or down.

p [(s] (p]

The P command is used to select output to either
the screen ("S") or the printer ("P") or to beth (°SP").
For example:

/* turns screen output on, printer output off
turns printer output on, screen output off
P /* turns both screen and printer output on

/* turns both outputs off - commands will

/* still be accepted and executed, you just

/* won't see theilr entry or output anywhere.

C 0T
mwow
~

»

In addition to allowing you to list BUG/65 results
to the printer, this command was designed to allow you to
debug the generation of intricate screen displays without
having the outputs of BUG/65 commands scroll your display
off the screen. It is a little crude, and might have a few

problems depending on what your program has done to 0S, but
is handy to have in emergencies. (The ©LFFLAG and NULFLG

bytes in the Configuration Table can help you here - see
section 11.) |

7.15 Quit to 0S/A+ command

The Q command will coldstart DOS. The results are
essentially the same as when you power-up the machine.

., s P

7.16 Read Commands

R [<OFFSET>] #filespec

The R command is used to load Dbinary files. If
OFFSET 1is specified, then OFFSET is added to tbe load
address(es) specified in the file, and the Jdata will Dbe
loaded at the loading point(s) plus OFFSET. This allows you
tc load a file into a Jdifferent memory location than where
it Is origined at. After the flle is loaded, the load
starting point specified 1n the file is placed i1nto the

user's PPC reqgilster.

BUG /65 supports concatenated binary file sections
as Jdescribed in the DOS 2.0S manual. It such a fxlg 18
loaded using the OFFSET option, however, ALL f1ile §c¢tloqs
will be loaded starting at the load addresses specxflgd 1n
the file plus OFFSET. In addition, the user's PC register
will wcontain the value of the load point of the last file

section loaded (not plus OFFSET).

7.16.2 RY - Read Sector(s)

---------—---—--------------

ny [<SECNO> [«<«BUFFER> [<NOSECS>]])

The RY command allows you to read a sector oL a
group of sectors from a diskette in disk drive number oune.
SECND specifies the sector number toO be read and defaults to
one, BUFFER specifies the hufter the scctor 1s to be read
into and defaults to BUG/65's loadpoint plus 3280U. NOSECS
specifies the nunber of sectors to read and defaults to one.
If more than one sector is specified, then consecutive

suocturs are read sequentially 1into memory beginning at
BUFFER.

7.17 S - Change Memory, Numeric mode

--—------------------------—----------

S <ADDR>Y

The S command allows you to replace the coantents
of memory bytes beginning at location ADDR with numerical
values. As soon as you type the required space character
after the address, BUG/6S will prompt you with the current
contents of the memory locatton at ADDR. Those coantents
will be displayed as a hexadecimal byte value. At that

point, you have the following options:

l. Typing SPACE will cause the current memory
location to be skipped and the contents of the next memory
location to be displayed.

2. Typing an UNDERLINE will causce the current
address to _be decremcnted by one. The new address ts then
displayed on the next line of the screen followed by the
contents of the new memory location.

-]. Typing a RETURN will cause the address of the
current ‘memory location to be displayed on the next line of
the screen followe:'l hy the contents of the current location.

4. ‘Typing FESC will get you out of the command and
put you bhack into conmand entry mode.

5. Typing an address value (any valid address
expression) will cause thar value to be centered 1nto meomory
at the current address. The address 13 then incremented by
one and the contents of the new menory location are
displayed. (Only the least significant byte of the address
value will be entered 1nto mcmory.) '

After you cxercise any option except option 4.,
BUG/65 will again prompt you with the contents of the
current memory address and you may select any of these
options again. |

.25~

e,

WL A

'_ o0 A.,_ *
: "'"g Y.
. . [] B4

- Frv L

ey b gy oy P P ool PRy ¢ 4 g S v

b L I R e

) v,

-
L4

. to‘b

2 aegipgigieteaes
. * - .
[] ‘.' ."
A ¥
- - - .

The T command will single-step through user
program instructions beginning with the instruction at the
current user PC register. The number of instructions to be
executed are specified by COUNT, which defaults to one. I1f
“S* is specified, then all of the instructions 1in a
subroutine are counted as one instruction for ‘tracing

purposes = the trace s turned off until return from the The V command will display the contents of the

user's registers in the following format:

subroutine ("S" stands for "skip the subroutine”). After
every instruction traced, BUG/65 will display the contents
of the user's registers. Some examples: A X Y Sp Nv_BDIZC PC INSTR
| _ il M U HH BBBBBBBB HHHU LDA 1000,X
T /* will execute one instruction and then

/* display the reglster contents This is interpreted as follows:

A = the hex value of the A reg
T S | . /* will execute five instructions, di1splaying X = the hex value of the X reg
/* registers after each instruction Y = the hex value of the Y reg
SP = the hex value of the stackpoilnter
TS 10 /* will execute 16 instructions. 1f any of N = the binary value of the negative flag
/* the instructions are JSR's, then the vV = the binary’value of the overflow flag
/* trace will be turned off after the JSR = the binary value of an unused bit in the
/* until the subroutine executes an RTS - status regqg
B = the binary value of the break flag
. | The trace command can't be use to trace D = the binary value of the decimal flag
instruction execution through PROM resident code. Any I = the binary value of the 1lnterrupt enable bit
attempt to do so, or to trace through non-existent memory, Z = the binary value of the zero flag
will result in a "BREAKPOINT ERROR". C = the binary value of the carry flag
PC = the hex value of the PC reg (This 1s a

pseudo register maintained Dby BUG/65.

It contains the location of the next

user program instruction to be executed.)
INSTR = the instruction at the current PC

7.19 U - Call a User Subroutine

i ol AL GWE O G W AE T i Tl A T AN anb Al vEp Ep Wb GED O Tl EE El O s T ol aER W i T .

U <ADDR> [<PARAM>]

The U command is used to call a user subroutine at
ADDR. The user routine 18 passed the optional parameter
PARAM in the X register (low byte) and Y register (high
byte). The user routine should return to BUG/65 via an RTS
instruction. 1f PARAM isn't specified, then zero 1is used.

--26-~ ~=2]=--

- -
{(x
L3

L X9
DA

4

3y

s d
f 95

2 ah

.v”;‘.‘faf‘ s
B
o

-,
¥]

i

B 4

'llo

F2p{ ek i

- b ¢ F 1

3

.”,
aﬁ;

-
—

P |
i Bl B Ty
<2 .

A

7.21 Write Commands

7.21.1 W - Write a File

W [:A] <START>» <END> ¢#filespec

The W command 13 used to write a binary file.

Memory from START to END is written to the file specified by
filespec in the standard OS/A+ binary file format. If the
;A" option 1isn't specified, then the data written will
replace the current contencts of the file 1f the file already
exists. If the ":A" option is specified, then the data 1s
appended to any data already in the file. A load header
consisting of a start and end address as described 1n the
OS/A+ manual will precede the appended data.

7.21.2 W% - Write Sector(s)

Wt [<SECNO» [<«BUFFER> [<NOSECS>»]]]

The W% command 13 wused to write a sector or a
group of sectors to a diskette. SECNO specifies the sector
number to be written and defaults to one. BUFFER specifies
the memory location of the sector data to be written and
defaults to the BUG,/o5 loadpoint plus $2000. NOSECS
specifies the number of sectors to be written and defaults
to oOne. I1f more than one sector is specified, then
consecutive sectors are written seguentially from memory
beginning at BUFFER.

--28-=

X REGHNAME

o

The X command allows you to change the contents of

user regilsters. REGNAME 1s a one-character register name
mnemonic. The allowed register names and thelr meanings
are:

A = A register

X = X register

Y = Y reglster

S = stackpointer register

P = program counter pseudo-regilster

F = status register (flags)

After you type in the name of the register to be

changed, BUG/65 will prompt you with that name character
followed by an equals sign. At that point you have the

following options:

1. Enter the new value for the register. The new
value may be any valid address expression. After the new

value, typing RETURN will end the command. Or you can type
SPACE which will prompt you with another register name for

possible change. The next register name is determined Dy

the order of the above list. For example, 1f you change
register Y then hit a space after the new value, BUG/65 will

prompt you for possible change of register S. This prompt
list continues through register F and then wraps back to
register A again.

2. Enter RETURN or ESC to end the command.

BUG/65 will display the new contents of the registers and
then put you back i1nto command mode. !

=20~

—--—--—-‘-—--—--_-------—------—

CSTAKT» <END>

The Y command will Jisassemble instructions 1in

memory beginning at START and ending ut END. The ftollowlng
conventions are used in the di1sassembly:

l.

2.

Standard MOS Technology mnemonics are used for opcodes.

Illegal opcodes are displayed as "***".

All numeric operands are displayed as he;adecimal
numbers.

Zero page operands will display as two hex digits, all
other non-immediate operands will display as four hex

digits.

No operand is displayed for accumulator mode operands.

--30-- ,

7.24 Z - Instant Assembler

2 <ADDR»>)

The 2Z command allows you to assemble instructions

to be stored in memory at ADDR. Immediately after typing
the SPACE character (or RETURN, which is allowed as well),
BUG/65 will prompt you with the current program counter
value of the 1instant assembler (which initially will be
ADDR). At that point you may ¢type in a valid assembly
language 1instruction. The format for an instruction line

18:

[<LABEL»>] <OPCODE» [<ODPERAND>]

LABEL may be any label in the form "Ln", where “n"
may be any digit from zero to nine. OPCODE may be any valid
MOS Technology instruction mnemonic or one of two pseudo-Ops
(described below). OPERAND, if allowed by the addressing
mode of the instruction, may be any valid address
expression. At least one space must separate a label from
an opcode or an opcode from an operand.

— -

After typing your instruction, type RETURN and the
instruction will be entered into memory at the current PC 1if
it doesn't contain any errors. If there are any errors,
then BUG/65 will display an error message and will reprompt
you with the current (unchanged) PC. If there are no

errors, then BUG/65 wil! display the object code created by
the 1instruction to the right of the instruction on the

screen and will prompt you with the PC of the next
instruction on the next screen line. You may exit the
instant assembler by typing ESC at any time, or Dby typlng
RETURN by itgelf in response to the PC address prompt.

The indtant assembler provides you with two
pseudo-ops. /" followed by an address will change the PC
to that address. It acts like an ORG ("*=") pseudo-op. For
example, "/4000" will 8et the PC of the next instruction
location to $49¥00. “"+" followed by an address will insert
the value of that address (least significant byte) at the
current PC and bump the PC by one. It acts 1like a DB
(.BYTE) pseudo-op. For example, "+34" will insert the hex

byte 34 at the current PC.

-—~31--

g

g

g Sy — .
i g N - .

32T L

g
s

— AR T BT

—— - -

e = AP A S—

e R S e R s & A el - s W -
- - -
- -

gt b T s

. L

. .; a.F-' -
e -

> » . apear
ted iy

.'.‘

.« - 4 't..}; .
i -f'.‘v"ﬂ e o

' “*.o
L] LI Y
.‘o A 1

’;

— — AR S 00 AP © : ¢ PV e
/

R A0

X ko
'.'- -‘."f y

-l ST

"

-—.-_.. -
[.
. T - -
‘ _0“ ‘, “"."
* N
. B L, ., v

-,-.-i-.‘cm—oau P T
. LI T .

. gy o

The instant assembler provides a simple labeling
capability. You may prefix an instruction with a two
character label of the form "Ln", where "n"™ may be any digit
from J0-9. You may then use that label as an operand 1in an
1nstruction, with the following three restrictions:

‘1.) Immediate type operands (#HH) can't be labels.
2.) Indirect type operands can't be labels.

3.) A label can't be combined with any of the standard
address operators (+, -, X, etc.)

Label references may be forward or Dbackward.
BUG/65 will store unresolved references and resolve them
when the label 1is later defined. You may reference
undefined labels twenty times before BUG/65 runs out of room
to store the unresolved locations - you'll then get an error
message and the assembly will be aborted. The same label
may DbDe reused more than once. [In such cases, BUG/65 will
use the last defined address of the label when 1t 1is
referenced.

[£f any labels have been referenced but not defined
wven you e¢xit the ilnstant assembler, BUG/65 will prompt you
w;th a message and the label name followed by an equals
sign. At that poilint you may either define the label by
entering any valid aiddress expression followed by a RETURN,
Or you may chose not to define 1t and simply hit RETURJ. If
you don't define the label, then the value of the label is
defaulted according to the following two rules.

1.) If an instruction using the undefined label is a
relative branch, then the value of the label for

that 1nstruction defaults to the location of the
ingtruction plus two. |

'2.{ FOr all other instructions, the value of the 1aibel
Jetaults to the location of the instruction plus
three.

| These rules guarantee that all branching
lnstructions using wundefined labels are effectively turned
1nto NOP'S. This offers some measure of protection ayainst
4 program going 1nto never-never land. (lf you reference a
labgl that isn't yet defined, the Oobject code displayed to
the right of the {nstruction on the screen will show
addresses generated according to these rules. Don't worry,
when the label is subsequently defined, BUG/65 goes back and
fixes up all these references.)

S,

'SECTION 8: Special Command Modifiers

8.1 Repeat Last Command Line

(RETURN]

The last command line entered and executed may be
repeated without typing the whole thing in again - just hit
RETURN. BUG/65 remembers the last line entered for just

this purpose.

8.2 Repeat Command Line Forever

e b o ol A Gm W o = o e G - GEF NP ape b o Wb S e WD A . T

Appending a slash to the end of a command line
will cause BUG/65 to repeat the execution of that command

line forever. The only way to stop such a repeat 1{is to
suspend or abort the command.

8.3 Display Last Command Line

GED i AES Ul G GE) S ANS Gnl GEP ik GuP s uDn ATD R oME G AWl WD A Wl Wk Sl G S AT R T G S

l1f you want to see what your .last command line

was, possibly because you might want tOo repeat it, just type
the "=" Ccharacter as the first character of the new command

line. BUG/65 will display the last line entered for you.

S e PR

SECTION 93 BUG/65 Memory Protection

| BUG/65 won't allow you to modify any portion of
i1t's code or variable storage areas with a BUG/65 command.
Any attempt to do so will result in a “PROTECTION ERROR".
For example, 1f we assume that the BUG/65 was loaded via the
command “BUG6S5 2003", the following command will cause an

error because it attempts to move a memory block into
BUS/65's area:

M 40J0 JJIFF 2009
BUG/65 protects all memory from loadpoint to

loddpuint+$}FFF 1n this manner, where loadpoint {3 that
specified 1in the invoking OS/A+ comnand line (or LOMEM, if

no loadpuint 18 specified). (The memcury protection feature
Cani be turned off by changing a byte in the Configuration
Table.)

S X

SECTION 18: BUG/65 Memory Usage

BUG/65 uses memory from $80 to $XX and loadpoint
to loadpoint+S$O1FF for variable storage. You can determine
the value of XX by looking at the LSTPGO byte 1in the
Configuration Table. It uses memory from loadpoint+5209 to

loadpoint+$1FFF for code storage.

-y ek P g aE o) WD W Wy VI SR YRS OR) emp W D el cuh OND euh AN Eh WD

BUG/65 will share the page zero memory that it
needs with a user program. It does this by keeping two
copies of these page zero locations. when BUG/65 1is
running, the BUG/6S5S page zero locations contain BUG/65's
stuff. When a Co is done to a wuser program, BUG/65 will
save it's own page zero data and replace it with the user's
data. If a user program breaks back to BUG/65, the reverse

operation 1s performed.

In addition, BUG/65 will translate any command
reference to these shared payge zero locations 30 that the
user may modify or inspect his own page zero data. It does
this by translating any command reference to the user's page
zero data to the location where the user's copy of the data
is actually being stored. This is all transparent to the
user. For example, you can fill memory from $80 to SFF with
zeros without crashing BUG/65. If you then display 3389 to
SFF, you will s8see zeros. They aren't really in locations
$S80 to SFF of course, but they will be when you run your
program. (This 1is the reason it may seem ¢to take an
extraordinarily long time to perform certain commands
(Fills, .. for axample). The reason {is that every memory
reference has to go through this translation process -~ Dboth
to translate zero paye references if necessary and to check
to make sure that BUG/6S isn't being overwritten.)

-=35--

*

.—....-./ —e— At - - * e PR w——

LR ':-.'G"{-‘.'-b,,_-':' :'..' x

T
S . # ‘
- -

-, -: L .
f [. e .

o

) |
...

"

° s N + . . . haly .
2 A P af”&. Rt '*Lf':"«:‘:'f‘ -

1Nl £ el
ek ..

Yo,

<

) »

’ .]
FYEY T . - ‘,!l' .“", ' . .
' e aip? . e df- .“.—is-‘l.‘

VO AP

-

/
‘c
+
b

SN N

' .-
~ Ot

e, ¥

e A -

4 '
e w SR

» \‘
y) p -’-'i‘ ;! ,
.. » w . y
:e z,’,a . N

TEVE
-2‘4

71_3‘

.
\.
R

i

, . . . - .
v - r's .u’ ot » -
‘ L P -~ 3 L &
g!q)Ei ; v
. ’ LJ
- "’ L4

_?L'.f

o ANL by

“ .&' ‘-‘r. ﬁ‘:

zﬁk

NI
,ﬂ,{i.

4
P

» ;'.
s X¥

“
a"/'i. :

> VR

-(-:-“;r‘
e 8

« 0
h"v

28 ¢
g

. >

. Sk SRS

PR . \lt .
ou.4u¢g¢#ﬂkvj,

SECTION 1l

Customization with the Configuration Table

baginning

ddata,

There is a Configuration Table 1located near the

of

which follows,

located

SxXxX

the code segment of BUG/65. By changing this
you can customize some BUG/6S stuff. In the table
"+$xxx” means that the configuration value 1is
bytes above the loadpoint address, where

loadpoint is the address specified 1in the invoking OS/A+

command
Example:

NAME

DISPV

PRINTV

GETKYV

TSTKYV

BEEPV

CHRCLR
CHRLUM
BRDCLR

EOLBYT

line

(or

LOMEM, if loadpoint is not specified).

if the invoxing command was “*"BUG6S 600U", then
DISPV will be located at §62009.

LOCATION

+5209

+$20C

+520F

+5212

+$215

+5218
+5219
+521A

+$21B

FUNCTION/COMMENTS

A~ JMP instruction to BUG/65's display a
character routine. All chars displayed
on the screen go through here. The char
to be displayed is passed 1n reqg A.

A JMP instruction to BUG/65's print a
character routine. All chars sent to the
printer go through here. The char to Dbe
printed is passed 1n reg A.

A JMP instruction to BUG/65's get a
keyboard character routine. AlJl keyboard
reads go through here. The key read 1is
returned 1n reg A.

A JMP instruction to BUG/65's test for a
key waiting routine. All tests for Kkey
waiting go through here. If no key 1is
waiting, the equal flag 1s returned set.
(The key is NOT returned by this routine
- GETKYV will be called to read the key
if there's one waiting.)

A JMP instruction to BUG/65's bell
routine. All becps are generated through
here. To eliminate the beeps, Just patch
this out with an RTS.

Character background color byte value.
Character luminance byte value.
Border color byte value.

This is the byte sent to the printer at

the end of a line. Normally set to ODH
or 9BH.

--36-- ,

alt
e

LFFLAG +$21C If nonzero, then a linefeed character s

sent to the printer after every EOLBYT.

NULFLG +$21D If nonzero, then 40 nulls will be sent

to the printer after every line. Used to
flush the printer buffer maintained by the
ATARI OS so that all 1lines will print

immediately.

PROTFG +$21E If nonzero, then BUG/65 will not allow

itself to be overwritten with a BUG/65
command. If zero, then BUG/65 will allow
itself to be modified.

MCBEND +921F High byte of end address of BUG/65's

codae. Normally set to high byte address
of 1loadpoint+$2000 (e.g, $59 1€ the
invoking OS/A+ command were BUG65 3900).
You would change this {if you added any
user command handlers after BUG/65. The
handlers would then be included in
BUG/65's memory protection features.

To change anything in the Configuration Table, you

must first disable memory protection by writing a samall
program to stuff a zero into PROTFG. For example, assuming
that the loadpoint is $2000 (command line was BUG6S 2000),
then using the instant assembler, you could enter "LDA 10,
STA 221E, RTS" at location $5800, and then run the program
with the “U" command by entering "U5000@ <RETURN>". This
will disable memory protection. Then make your changes,
recnable memory protection if you want by storing $FF into
PROTFG, then dump the modified BUG/65 to diskette.

Be careful when changing any of the JMP
instruction vectors. Since BUG/65 1is constantly calling
these locations, the instant you change them control will be
passed to the new routine. Your replacement routines had
better be in place and ready to run or it's ga-ga time.
Actually, you will probably have to change all three bytes

of a vector at once with a small user program.

Also, be careful about calling the vectors DISPV,
PRINTV, GETKYV, TSTKYV, and BEEPV. Since they use BUG/65's
page zero data to operate, they can't be called from a
running user program without first calling ‘the MCBGPO
routine defined in the User Program Interface section.

Y I

s 0

£

) '?\"'.'

2 bt il B ek e

- ’ . .
. S~ iire « .
- e L ¥ - ’
’ R "l - - »t
’ ',\ 1 -

. "'
", " b

PGS WS P

o .,

PRARFY

.
HP Y

¢
: ‘ ?. 3 - 'i"'
[TR ‘. .&' - R |

A

“ A
. ~ .
A~ Py Gy 8 . e, &

(. » -

.
LY -.ﬂ -y ‘ik.‘

’
k .

F X
“am. et

' e b

SECTION 12: User Command Interfice

-------—-—-—------—-------_--—--——--

It's possible to add commands to BU3/65. The
hooks to do so have been provided in a group of vectors
located at loadpoint+30220 called the User Commani Interface
Vectcrs. These vectors provide most of the i1nterfaces to
BUG.'65 that you'll need to add commands.

The commands you add may be activated by any non-
BUG,/05 command char. For example, you could add the numeric
commands *1" through *“9". When BUG/65 recoynizes 4 non-
alphabetic command character, 1t will call the wvector
USERCMD. In 1t's initial state, USRCMD is just a 3-byte
subroutine that returns the equal flag reset. BUG/65
dssumes that the equal flag being reset means that a user
command handler considers the command 1illegal. In this
Case, BUG/65 will renmort a “CMD ERROR". [f USRCMD returns
the equal flag set, then BUG/65 assumes that a user command
handler processed the command. In this case, BUG/65 won't
generate a command error, and will proceed to process the
rest of the command line.

S0, to add your own command handler, just patch a
JMP to your handler at USRCMD. BUG/65 will pass you the
command character that it considered illegal in reg A. On
teturn, you must 1i1ndicate the status of the command - equal
set means you handled it, equal reset means you didn't like
it either.

There are a number of other vectors in the User
Inter face group which you may use to process the command.

Here's the complete list (and, as in the previous section,
the string "+$xxx" indicates a displacement from the

loadpoint):

NAME LOCATION FUNCTION/COMMENTS

"USRCMD +3220 Subroutine called by BUG/65 on every non

alpha comand char. Returns equal set if
command handled by user, else equal

reset.
GETCHR +$223 User handler can call this to get the
next char from the command line in reg
A.
PUTCHR +5226 User handler can call this to return the

last char taken from the command 1l1lne.
The char 1tself doesn't have ¢to Dbe
passed. This 1is used to put chars back

that you've taken but don't want - like
an EOL.

User handler can call this to collect a
hex alddress from the command line. The
.address 18 returned in a word at
SFE, SFF. I1f next command line chars are
not a valid address, zero 1s returned.

</
NS
tD
O

GETI1IHX +

GET2tiX +522 User handler can call this to collect
two hex addresses from the command line.
The first address 1s returned in a word
at S¥C,SFD, the second at SFE,SFF. Zero
is returned for any invalid address.

GET 31X +522F User handler can call this to collect
three hex addresses from the command

line. The first address is returned in a
word at SFPFA, $FB, the second at $FC,SFD,

and the third at SFE,SFF. Zero \is
returned for any invalid address.

-=39--

L Y I

ADRCHK

ERRPAR

DHXBYT

DHXWRD

CTBPTR

LSTPGO

+5232

+5$235

+$238

+$238

+S23E

+$240

User handler «can call this to perform
the usual BUG/65 address checking and
translation. The checking refers to not
allowing BUG/65 to be overwritten. The
translation refers toO correcting user
page zero addresscs. The user handler
passes the address to check in reg X
(LO) and reg Y (HI). If the address
points into BUG/65, a "PROT ERROR" will
occur, and the user handler will not be
returned to. 1f the address references a
user page zero value that 1s belng
stored somewhare else by BUG/65, then the
address oOf where the actual user pagse
zero byte is located will be returned 1in

reg X (LO) and reg Y (HI).

The user handler can JHMP €O here toO
report a parameter errorc. There 1s 0O
return back to the user Thandler. BUG/65
will abort command line processing.

The user handler can call this to
display a hex byte. The byte 13 passed
in reg A.

The user handler can call this toO
display a hex word. The hex word 18
passed in reg X (LO) and reg Y (HI).

This is a pointer to BUG/65's jump table
for the alphabetic comanda. Every letter
has a word entry in this table. The
entry 1s the address of the handler for
that command minus one. The first word
in the . table is the address minus oOne
for the "A" command, the last is the

game for the "Z" command. [If you want,
you can change this table to point toO
your own comand routines, thereby

changing the BUG/65 command set.

™is is the address (byte value) of the
last page zero location used Dy BUG/65.
You can use this to locate free page
¢caro memory for your own use. (See the
example user command listing.).

——dP - .

4¢ SPECIAL NOTE *#*

All of the above routines assume that BUG/65 data is in
page zuero. THEY WILL NOT WORK 1if called from a running user
program for that reason, unless the user program manages page

zero with the following two routines:
I

MCBGPO +$241 Assumes BUG/65 data 1is in page zero.
Saves BUG/65 page zero and replaces with

user page zero. Use this routine from a
running user program before calling any
of the above routines.

USERPO +$244 Assumes user data is in page zero. Saves

user page zero and.restore$ BUG/65 page

zero. Use this routine from a running
user program after calling any of the
above routines to restore the running
progyram's page zero data.

llere 18 an assembly listing of an example user

comand. This command will be command "1%. It will
calculate and display an exclusive-or checksum Dbyte on a
range of memory. The syntax of the command is:

1 <«START>» <END>

NOTE: It 13 highly recommended that user commands only be
patched into a non-relocatable version of BUG/65. See
Sect;on 4.2 for instructions on making a non-relocatable
version with a user specified loadpoint.

t**tttitttttiitttl.tt.iht‘.tt.iﬁth..'.iﬁt.l.i.ﬁiii

g W -g

EQUATES [NTO BUG/65:

to be determined by userl|l
just an abbreviation

loadpoint = 22727
lp = loadpoint

MCBEND = 1p+S21F BUG/65 END CODE MSH
DISPV = lpr$209 DISPLAY CHAR

USRCMD = l1p+$220 USER COMMAND VECTOR
GET2iX = 1p+$22C GET 2 HEX PARAMS

HEX - SFC HEX PARAM 1 RESULT

HEX?2 - SFE HEX PARAM 2 RESULT
ERRPAR = 1p+$235 REPORT PARAM ERROR
oqxagT a 1p+$238 DISPLAY HEX BYTE

%bTPbD = 1p+5240 LAST BUG/65 P@ BYTE USED
EOQL -

9B END OF LINE CHAR

——q]--

F I |
, . .
. - R ‘ L - ‘
m«-“ ‘-..u >t & e b . -‘x-h' ™y v oo

gy ut.umdwu'uc.u«-&.b "'.. i <

...t.i...tt.‘ﬁtt.tl..ﬁ..ttt.....t.ii.titititittﬁlit

®
[

USERC]

CMDOK

PARMER

PARMOK

-y LY

LOOP

NXTEOR

LOE

JSR
LDA
ORA
BEQ
LDA
ORA

BNE

JMD

LDX

LDA
STA
TAY

LDA
CMP
BCC
BNE
LDA
CMP
BCC

LDA
EOR
STA
INC
BNE
INC
JMP

LDA
JSR
LDX
LDA
JSR
LDA
RTS

« BYTE
. END

USRCMD
USERC1

1p+$2000
il

CMDOK

GET2HX

HEX1
HEX1+1
PARMER
HEX?2
HEX2+1
PARMOK

ERRPAR

LSTPGY

0
1,X

HEX2+1
HEX]1 +1
DONE
NXTEOR
HEX2
MHELL
DONE

(HEX1),Y
1, X

1, X

HEX]
LOOP
HEXL +1
LOQP

§ EOL.
DISPV
LSTPGY
1, X
DHXBYT
$0

MCBEND
»[*+SFF)

Y Y.

PATCH USs INTO BUG/65

RIGHT AFTER BUG/65 CODE
COMMAND "1*" ?2

YES
ELSE RTN EQUAL RESET - ERR

GET START, END
MAKE SURE BOTH SPECIFIED

OR ELSE ERROR

REPORT PARAM ERROR

LAST BUG/e5 PO UYTHL
(WE'LL USE THE NEXT
FOR QUR ACCUMULATOR)

CLEAR ACCUMULATOR

INIT Y PTR INDEX
PAST END ADDRESS ?

YES
NO

YES
CALC EOR CHKSUM

EOR WITH ACCUM
AND SAVE IN ACCUM

BUMP PTR

TO NEXT SCREEN LINE

RESTORE ACCUM ADDRESS
DISPLAY HEX RESULT

RTN OK (EQUAL SET)
CHANGE BUG/65 CODE

END BYTE TO INCLUDE
THAT'S ALL FOLKS

